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Abstract. In this Chapter we introduce the description of single and pair
particle static properties of liquid crystals, and discuss their calculation
from computer simulations. We also briefly describe the calculation of dy-
namic properties from molecular dynamics simulations using Linear Re-
sponse theory.

1. Single particle properties

We consider a system of N molecules at certain specified thermodynamic
conditions. Typically we shall consider that volume V and temperature T
are fixed together with N (canonical conditions), but we shall also refer to
the case where pressure P is fixed together with T (isobaric conditions).
We assume the molecules to be classical, rigid particles with centre of mass
at position r and orientation ω given for instance by a set of three Euler
angles (α, β, γ), or only two angles (α, β) as illustrated in fig. 1 if we can
assume that the molecules have cylindrical symmetry [1].
We shall discuss the calculation of observables in liquid crystals [2] in

fairly general terms, but adopting a rather special point of view, that of
computer simulations. As will be clear from the contributions in this book,
computer simulations techniques [3] actually generate configurations of the
system, i.e. sets of positions ri = (xi, yi, zi) and orientations ωi of all the
particles. In particular the Monte Carlo (MC) method generates equilib-
rium configurations, albeit non necessarily in the proper time order, while
Molecular Dynamics (MD) actually generates configurations time step af-
ter time step in their natural time sequence. In this last case configurations
consists not only of positions and orientations, but also of the full set of
linear and angular velocities.
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Figure 1. The two angles α, β defining the orientation of a cylindrically symmetric
molecule (a) and the three Euler angles α, β, γ required for a generic rigid particle (b).

A complete static information about the system is represented by a
sufficiently large set of M of its configurations. Indeed if we can calculate
the value of a property dependent on molecular positions and orientations
A(r1, ω1, ..., rN , ωN ) in each of these equilibrium configurations (J ), then
the average value of A is

〈A〉 = 1
M

M∑
J

A(r1, ω1, ..., rN , ωN )(J ). (1)

The enormous number of positional and orientational coordinates specifying
the various configurations is fortunately unnecessary if, as it is often the
case, we are only interested in calculating average properties of single or
pair molecule properties. In the next sections we shall discuss these two
cases in turn.

1.1. THE SINGLET DISTRIBUTION AND ITS EXPANSION

Let us suppose that the probability density for a molecule to have a certain
position (r + dr) and orientation (ω + dω) i.e. P (1)(r, ω) [4] is known. In
this case the average of any property A(r, ω) relating to a single molecule
can be calculated as

〈A〉 = 〈A(r, ω)〉r,ω
=

∫
drdωA(r, ω)P (1)(r, ω)/N, (2)

where we use the angular brackets 〈...〉 to indicate a statistical average over
the relevant degrees of freedom (here on positions and orientations), that
we indicate explicitly only when needed. The volume elements dr, dω are
respectively dxdydz and dα sinβdβ or dα sinβdβdγ for a rigid molecule
of arbitrary symmetry. Thus the integral over positions gives the volume
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V of the sample: and that on orientations gives the total angular mea-
sure Ω (Ω = 4π for cylindrical symmetry and Ω = 8π2 for the general
case). The factor 1/N in eq. 2 comes from the normalization of the distri-
bution P (1)(r, ω). The singlet distribution P (1) therefore contains all the
microscopic information necessary to calculate one particle properties and
in turn the structure and ordering of the system will be reflected by P (1).
P (1)(r, ω) counts the average number of particles that are found in a small
volume element centred at (r, ω). In practice having all the configurations
at hand we could scan r and ω space adding one to a suitable multidimen-
sional histogram bucket when we find a molecule with that (r, ω). A useful
way of writing this definition for the singlet distribution is through the in-
troduction of Dirac delta functions. Indeed, since, for example, δ(r1 − r′1)
is different from zero only when the position r1 of molecule 1 is at r′1 we
can use a delta function as a device for counting the molecules at a certain
position-orientation:

P (1)(r1, ω1)/N = 〈δ(r1 − r′1)δ(ω1 − ω′
1)〉r′1,ω′

1
, (3)

which gives the average number of molecules with the desired position-
orientation. The formula, very useful in extracting distributions from sim-
ulated configurations, can be easily checked using the definition of single
particle average eq. 2. Thus,

〈A(r1, ω1)〉r1,ω1 =
〈∫
dr′1dω

′
1δ(r1 − r′1)δ(ω1 − ω′

1)A(r
′
1, ω

′
1)

〉
r1,ω1

(4)

=
∫
dr′1dω

′
1A(r1, ω1)

〈
δ(r1 − r′1)δ(ω1 − ω′

1)
〉
r1,ω1

= 〈A(r′1, ω′
1)〉r′1,ω′

1
, (5)

giving eq. 3. We now concentrate on the description of long range orienta-
tional order. This is a central issue for liquid crystals, since this kind of
order is common to all the various mesophases. In general we can obtain
a purely orientational distribution P (ω) integrating out positions in eq.
3. For a uniform fluid, such as a nematic (but not a smectic), the singlet
probability will be anyway independent of the position of molecules:

P (1)(r, ω) = ρP (ω), (6)

where ρ ≡ N/V is the number density. In the limiting case of an ordinary
isotropic liquid P (ω) will just be a constant.
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Figure 2. Schematic molecular organization for a system of polar molecules without
overall polarization.

2. Orientational order of cylindrical molecules in uniaxial phases

2.1. EXPANSION OF THE ORIENTATIONAL DISTRIBUTION

We start by considering the simplest case of a molecule that can be consid-
ered of cylindrical symmetry, be it or rod-like or disc-like shape and that is
embedded in uniaxial phase, P (ω) = P (α, β). We do not distinguish by now
if the molecule is a solute one or if it actually belongs to the mesophase.
If we take the laboratory Z axis parallel to the director and if the

mesophase is uniaxial around the director then rotating the sample about
Z should leave all observable properties unchanged. This means that the
probability for a molecule to have an orientation (α, β) should be the same
whatever the angle α [5]. More concisely

P (α, β) = P (β)/2π. (7)

Another experimental finding for nematics and some smectics is that noth-
ing changes on turning the aligned sample upside down. Thus we should
have

P (β) = P (π − β). (8)

This is quite reasonable if we can think of the molecules of interest as
spherocylinders or other cylindrically symmetric objects in which head and
tail are not distinguishable. However, most mesogen molecules are not like
this and for instance have dipole moments like p-n alkyl p’-cyano biphenyls
(nCB). In practice the symmetry eq. 8, that is normally verified experi-
mentally, means that the molecular arrangement will be such as to have
on average no overall polarization (no ferroelectricity) as we show schemat-
ically in fig. 2. There is no fundamental argument that forbids uniaxial
ferroelectric fluids and indeed these have been predicted by theory and
simulations (see [6] and references therein), although not yet experimen-
tally found. Notice that here we have used the same notation for P (β) and
P (cosβ), that we assume to be renormalized to 1.
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In a real experiment it will be extremely difficult to get this kind of
complete information on the orientational distribution. A useful approach
is, however, that of expanding P (β) and approximating it in terms of a set
of quantities that we can obtain from experiment. We need for this a set of
functions that are orthogonal when integrated over dβ sinβ. Such a set of
functions is that of Legendre polynomials PL(cosβ), for which we have∫ π

0
dβ sinβ PL(cosβ)PN (cosβ) =

2
2L+ 1

δLN . (9)

The explicit form of these Legendre polynomials is really very simple [7]
and the first few terms are

P0(cosβ) = 1 (10)
P1(cosβ) = cosβ (11)

P2(cosβ) =
3
2
cos2 β − 1

2
(12)

P3(cosβ) =
5
2
cos3 β − 3

2
cosβ (13)

P4(cosβ) =
35
8
cos4 β − 30

8
cos2 β +

3
8
. (14)

Notice that PL(cosβ) is an even function of cosβ if the rank L is even and
an odd one if L is odd. Since cos(π−β) = − cosβ this means that in writing
our even orientational distribution in terms of PL(cosβ) functions only even
L terms need be retained. Clearly the odd terms will be present if P (β) is
not even, as for ferroelectric liquid crystal phases. Limiting ourselves to the
more common even (see eq. 8) case we can write

P (β) =
∞∑
L=0

2L+ 1
2

〈PL〉PL(cosβ); L even, (15)

where the coefficients have been obtained exploiting the orthogonality of
the basis set. The averages 〈PJ〉:

〈PJ〉 =
∫ π

0
dβ sinβPJ(cosβ)P (β)/

∫ π

0
dβ sinβP (β) (16)

represent our set of orientational order parameters. The knowledge of the
(infinite) set of 〈PJ〉 would completely define the distribution. From eq. 15
we can write

P (β) =
1
2
+
5
2
〈P2〉P2(cosβ) +

9
2
〈P4〉P4(cosβ) + . . . (17)
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The first term contains the second rank order parameter

〈P2〉 = 32〈cos
2 β〉 − 1

2
. (18)

It is easy to see that 〈P2〉 has the properties that we would intuitively
expect an order parameter to possess and that can be identified with the
empirical parameter introduced by Tsvetkov [8]. For a system of perfectly
aligned molecules where β = 0 for every molecule 〈P2〉=1. At the other
extreme, for a completely disordered system such as an ordinary isotropic
fluid we have 〈cos2 β〉 = 1/3 and thus 〈P2〉 = 0. In general

−1
2
≤ 〈P2〉 ≤ 1 (19)

because 0 ≤ 〈cos2 β〉 < 1. On going from an ordered to a disordered sys-
tem the order parameter jumps discontinuously to zero if the transition
is of the first order type, like the nematic–isotropic one. Notice that the
same 〈P2〉 can be compatible with rather different molecular organizations
and thus that it is important to try to determine 〈P4〉 or indeed as many
as possible order parameters, to discriminate between alternative structural
physical models [12]. The treatment has been generalized to molecules of ar-
bitrary symmetry and to phases more complex than uniaxial by expanding
P (α, β, γ) in a set of Wigner matrices DL

mn(α, β, γ), orthogonal in (α, β, γ)
space and systematically applying the symmetry properties of the molecule
and of the phase [4].

2.2. EXPERIMENTAL DETERMINATION OF ORDER PARAMETERS. AN
EXAMPLE

The order parameter 〈P2〉 is proportional to the anisotropy in experimen-
tally measurable second rank properties. Just to make contact with real life
measurements, we briefly consider as an example its determination from the
diamagnetic anisotropy of liquid crystal materials.
When a diamagnetic material is placed in a sufficiently strong magnetic

field a magnetization M is induced.

M =
1
µ0

χB, (20)

where B is the magnetic induction and χ is the magnetic susceptibility. In
a uniaxial liquid crystal two components χZZ ≡ χ‖ and χXX = χY Y ≡ χ⊥
corresponding to the director parallel or perpendicular to the magnetic
field direction, can in principle be determined. The trace of χ is essen-
tially temperature independent and can be taken to be the isotropic value
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χ̄ = Trχ/3. However, the difference between the parallel and perpendic-
ular components changes significantly with temperature and is related to
the ordering existing in the system. It is reasonable, for this property, to
assume that the macroscopic diamagnetic susceptibility χ is the average of
independent molecular contributions corresponding to molecular magnetic
polarizability χMOL. Thus

χ‖ = 〈χLAB
ZZ 〉 (21)

=
∑
a,b

〈RZaχ
MOL
ab R̃bZ〉 (22)

= 〈R2
Zz〉χMOL

‖ + (〈R2
Zx〉+ 〈R2

Zy〉)χMOL
⊥ (23)

= 〈cos2 β〉χMOL

‖ + 〈sin2 β〉χMOL
⊥ (24)

= χ̄+
2
3
∆χ〈P2〉, (25)

where Rab are elements of the cartesian rotation matrix [1] and χ̄MOL =
1
3(χ

MOL

‖ + 2χMOL
⊥ ) equals χ̄. Thus determining χ‖ and the isotropic value χ̄

gives 〈P2〉 if the molecular anisotropy ∆χ ≡ χMOL

‖ − χMOL
⊥ is known. DeJeu

and coworkers [9] have measured the diamagnetic susceptivity anisotropy
in a series of Schiff’s base nematics which include the popular mesogens
n –(4 –methoxy benzylidene) –4′ –n –Butyl aniline (MBBA), p –methoxy
benzylidene p –cyananiline (MBCA), anisylidene –p –aminophenyl acetate
(APAPA), as well as o –hydroxy –p –methoxy benzylidene p’ –Butyl aniline
(OHMBBA). In fig. 3 we report the temperature dependence of 〈P2〉 for a
few cases. We notice that the order decreases with increasing temperature
and then suddenly jumps to zero, as expected for this first order phase
transition. Plotting the results in terms of reduced temperature T/TNI

shows a similar trend for the different compounds, even though the detailed
behaviour is not really universal. The temperature dependence of the order
parameter is often found to be well represented by the so called Haller
equation

∆χ(T/TNI) = ∆χ(0)(1− T/TNI)β , (26)

where ∆χ(0) and the exponent β are fitting parameters. The exponent β
that describes the temperature dependence of 〈P2〉 when approaching the
transition has values β = 0.17− 0.22 for many liquid crystals [10]. For the
materials in fig. 3 β = 0.17 (MBBA), 0.185 (APAPA), 0.198 (OHMBBA)
while for MBCA the value is rather different: β = 0.134.
The experimental determination of second and fourth rank order pa-

rameter can now be achieved with a number of techniques, as discussed in
detail in the various chapters of [11].
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Figure 3. The second rank order parameter 〈P2〉 for MBBA (squares), OHMBBA
(circles), MBCA (crosses), APAPA (triangles) obtained from diamagnetic anisotropy
measurements as a function of temperature T/TNI scaled with respect to the ne-
matic–isotropic transition temperature [9].

2.3. GETTING ORDER PARAMETERS FROM SIMULATIONS

The calculation of orientational order parameters is clearly of particular im-
portance in computer simulations of model liquid crystals. It also requires
the development of some new algorithms as compared to simulations of
isotropic fluids. We start by considering for simplicity a uniaxial mesophase
formed of cylindrically symmetric particles, so that the description of or-
dering can be realized in terms of Legendre polynomial averages 〈PL〉. In
practice second and fourth rank parameters are particularly relevant and
we shall consider their calculation in some detail.

2.4. SECOND RANK

The second rank order parameter 〈P2〉 can ideally be calculated by aver-
aging P2(cosβ) over the probability P (β) of finding the molecule at an
orientation β with respect to the director, eq. 16.

This method can be used if the director orientation n̂ is known. This
could in principle be achieved in MD, preparing a system with the director
along Z, say, and exploiting the much slower time scale for director tum-
bling compared to molecular reorientation. Alternatively an attempt can
be made, even in MC, of pinning the director along the z direction by an
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external field, for instance adding to the potential energy a term

Uext = −ζ
N∑
i=1

P2(cosβi). (27)

where the positive coupling parameter ζ determines the strength of inter-
action with the field and βi measures the angle between the axis of the i-th
molecule and the field. In these rather special cases 〈P2〉LAB can be simply
calculated from an average overM equilibrium configurations of the sample
order parameter 〈P2〉S . We have

〈P2〉LAB =
1
M

M∑
J
〈P2〉(J )

S , (28)

where

〈P2〉(J )
S ≡ 1

N

N∑
i=1

P2(ûi · n̂)(J ) (29)

is the order parameter computed for the J -th configuration and ûi ≡
(sinβi cosαi, sinβi sinαi, cosβi), defines the orientation of the i-th molecule
in the laboratory frame. In this particular case it may be even simpler to
calculate a histogram for the singlet orientational probability P (β) and
subsequently determine all the desired order parameters 〈PL〉LAB by inte-
gration.
The problem in using the simple method just described is that, at least

in the ordinary MC method, we work in an arbitrary laboratory frame
and we have no applied field. Thus we do not know the orientation of the
director in each configuration and we have no a priori guarantee that it will
remain the same during the simulation. This in turn means that we cannot
normally calculate 〈P2〉 as in eq. 16 in a configuration and then average
the result over cycles. To find a way out [13] it is helpful to remember that
computer simulations can be considered as experimental techniques where
we can choose our observable at will. Thus we introduce a simple single
molecule matrix property A, whose only non vanishing component is along
the molecule symmetry axis ûi:

AMOL
ab = δazδbz. (30)

The sample average of A in our arbitrary laboratory frame is obtained re-
lating the components ofA to the molecule fixed components and summing
over all particles:

〈ALAB
ab 〉S =

1
N

N∑
i=1

{
∑
a′b′
(Ri)aa′(Ai)MOL

a′b′ (R̃i)b′b} (31)
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= Qab +
1
3
δab. (32)

Here we have defined the ordering matrix Q averaged over the sample
(configuration) as

Q =
1
N

N∑
i=1


 u2

i,x − 1
3 ui,xui,y ui,xui,z

ui,xui,y u2
i,y − 1

3 ui,yui,z
ui,xui,z ui,yui,z u2

i,z − 1
3


 . (33)

since (Ri)aZ = ui,a. Notice that Q is symmetric and traceless. Diagonal-
ization of 〈ALAB〉S with the rotation matrix U identifies the director frame
where

〈ADIR
ZZ 〉S =

∑
UaZUbZ〈ALAB

ab 〉S (34)

=
2
3
〈P2〉S + 13 . (35)

The diagonalization procedure is equivalent to determining the order by
maximizing the expression

〈P2〉(J )
S =

1
N

N∑
i=1

P2(ûi · n̂(J )), (36)

with respect to the unit vector n̂(J ). Indeed in the special case that the
director n̂(J ) is parallel to the Z axis we see immediately that

Q =


 −1

3〈P2〉S − ξ 0 0
0 −1

3〈P2〉S + ξ 0
0 0 2

3〈P2〉S


 . (37)

The sample biaxiality parameter ξ corresponds to different ordering with
respect to the laboratory X and Y axis and will tend to zero at large sam-
ple sizes if the mesophase has uniaxial symmetry [14]. It is now obvious
that the rotation diagonalizing 〈ALAB〉 or equivalently Q defines the orien-
tation of the director frame in our laboratory frame. The director itself is
defined by the eigenvector corresponding to the largest eigenvalue, λmax,
of Q [13, 15]. The second rank order parameter referred to the director in
the sample, 〈P2〉λ is obtained from this λmax as 〈P2〉λ,S = 3

2λmax. Thus we
can define a Q tensor for every configuration, say Q(J ) for the J -th one.
By diagonalizing Q(J ), we obtain an order parameter P (J )

2 and a director
n̂(J ), that can change from one configuration to the next. Since P (J )

2 is
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Figure 4. Orientational order parameters 〈P2〉, 〈P4〉 as a function of scaled temperature
for a Gay–Berne system [17, 18]. We show results for a for N=512 (•) and N=1000 system
in cooling (�, �) and heating (�, ✷) sequences. The vertical dashed line indicates the
nematic–isotropic transition.

obtained as an eigenvalue and the eigenvalues of a matrix are rotationally
invariant (scalar), we then calculate

〈P2〉λ = 3
2M

M∑
J
(λmax)(J ), (38)

where (λmax)J is the largest eigenvalue of the average tensor in config-
uration J . The calculation of the orientational distribution with respect
to the director strictly involves transforming the orientations, after each
diagonalization, to the new director frame.

2.5. FOURTH RANK

We generalize the frame independent procedure by defining [16] a fourth
rank molecular property as the direct square of the matrix A defined in eq.
30:

F = A⊗A. (39)

We notice that in the molecule fixed frame the fourth rank property defined
in this way has only one non vanishing component, Fzzzz, i.e.

FMOL
ijkl = δizδjzδkzδlz. (40)
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The sample average of F is

〈FLAB〉S = 〈ALAB ⊗ALAB〉S (41)
= 〈(UADIRŨ)⊗ (UADIRŨ)〉S (42)
= (U⊗U)〈ADIR ⊗ADIR〉S(Ũ⊗ Ũ) (43)
= (U⊗U)〈FDIR〉S(Ũ⊗ Ũ), (44)

where LAB,DIR indicate laboratory and director frame. We then relate the
components in the director frame to those in the molecular frame

〈FDIR〉S = 〈(RAMOLR̃)⊗ (RAMOLR̃)〉S (45)
= 〈(R⊗R)AMOL⊗AMOL(R̃⊗ R̃)〉S (46)
= 〈(R⊗R)FMOL(R̃⊗ R̃)〉S . (47)

The fourth rank order parameter 〈P4〉 can be obtained from

〈FDIR
ZZZZ〉S = 〈(RZZ)4〉S (48)

= 〈cos4 β〉S (49)

=
∑
a,b,c,d

UaZUbZUcZUdZ〈F LAB
abcd〉S (50)

as
〈P4〉S = 358 〈cos

4 β〉S − 30
8
〈cos2 β〉S + 38 . (51)

In fig. 4 we show, as an application of these techniques, the order parameters
〈P2〉, 〈P4〉 obtained from MC simulations for a Gay–Berne liquid crystal
[18].

3. Biaxial order parameters

The determination of order parameters for different molecular and phase
symmetries from computer simulations is far from simple. However, the
idea, outlined above, of introducing suitable molecular observables and de-
termining their average in the laboratory system as in a virtual exper-
iment is quite helpful and has been used to determine the biaxial and
uniaxial order parameters [19]. The minimum set of order parameters re-
quired to describe biaxial molecules in a biaxial phase is [20, 21, 12] 〈P2〉,
〈R2

02〉, 〈R2
20〉, 〈R2

22〉. The RL
mn are combinations of Wigner functions D

L
mn

symmetry-adapted for the D2h group of the two particles [4]. Their explicit
expressions, for the even terms, are:

RL
mn ≡ 1

2
Re(DL

mn +DL
m−n) (52)
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=
1
2

[
cos(mα) cos(nγ)[dL−mn(β) + dLmn(β)] +

sin(mα) sin(nγ)[dL−mn(β)− dLmn(β)]
]
. (53)

Experimentally one would try to select a sufficiently high number of molecu-
lar propertiesAMOL

ij and measure their average values 〈ALAB
ij 〉. Then, through

a diagonalization of these average tensors 〈ALAB〉, one could determine the
order parameters. The requirement that these order parameters are the
same for different observables helps in assigning the correct principal labo-
ratory frame. As an illustration the explicit expressions for the eigenvalues
of a tensor Fab = δazδbz are

fXX =
1
3
− 1
3
〈P2〉+

√
2
3
〈R2

20〉 (54)

fY Y =
1
3
− 1
3
〈P2〉 −

√
2
3
〈R2

20〉 (55)

fZZ =
1
3
+
2
3
〈P2〉. (56)

The non-trivial problem is finding a consistent way of assigning the three
eigenvalues f1, f2, f3 of the matrix F to the X,Y,Z axis. In the uniaxial phase
or anyway when 〈R2

20〉 � 0, and taking 〈P2〉 > 0, we have fZZ > fXX � fY Y
and letting fZZ = max(f1, f2, f3) is sufficient to assign the axes except
for an irrelevant exchange of X and Y . However, in the biaxial phase it
may well happen that fXX > fZZ , e.g. when 〈P2〉/〈R2

20〉 <
√

2
3 , and,

even if we assume that 〈P2〉 and 〈R2
20〉 are always positive, there is not a

unique choice of axes other than assigning Y using fY Y = min(f1, f2, f3).
In particular the basic assumption used to calculate 〈P2〉 in the uniaxial
case, i.e. max(f1, f2, f3) = fZZ , breaks down. Fortunately in simulations
we can perform more virtual experiments, determining the average of other
probe properties sensitive to the alignment of the two other molecular axes.
In practice, equations containing 〈R2

02〉 and 〈R2
22〉 as well as 〈P2〉, 〈R2

20〉 are
constructed from the average of two other matrices, say Gab = δaxδbx and
Hab = δayδby. The resulting expressions of the order parameters in terms
of the average tensors are:

〈P2〉 = 3
2
fZZ − 1

2
(57)

= 1− 3
2
(gZZ + hZZ) (58)

〈R2
20〉 =

√
3
8
(fXX − fY Y ) (59)
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Figure 5. The second rank order parameter 〈P2〉 (a), 〈R2
02〉 (b), 〈R2

20〉 (c), 〈R2
22〉 (d) vs.

temperature obtained from simulation: λ = 0.2 (circles), λ = 0.3 (squares) λ = 0.40825
(triangles) and from Mean Field Theory (lines) [19]

=
√
3
8
(gY Y − gXX + hY Y − hXX) (60)

〈R2
02〉 =

√
3
8
(gZZ − hZZ) (61)

=
√
3
8
(hXX + hY Y − gXX − gY Y ) (62)

〈R2
22〉 =

1
2
(gXX − gY Y + hY Y − hXX). (63)

The normalized eigenvectors of the matrices give the axes of the reference
system, except for the sign, so there are 3! = 6 different systems correspond-
ing to the eigenvalue permutations. In [19] we have chosen the eigenvalue
permutation which satisfies the following conditions: a) 〈P2〉 > 0; b) the
same order parameters must have the same values in all the ways they are
computed (here, e.g., 〈P2〉 and 〈R2

20〉 are computed in two different ways);
c) for each configuration at one temperature the order parameters must
be as close as possible to the mean value of the order parameters of the
previous temperature (the sum of the differences is minimized). The above
procedure effectively assigns the X and Y axes when the phase is biaxial.
In the uniaxial phase X and Y are undistinguishable and the method, even
though not needed, is not applicable because it forces a difference that is
completely spurious. In a similar way, application of the algorithm previ-
ously described for finding 〈P2〉 to an isotropic phase will give a spurious
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non-zero order parameter (decreasing with size). In fig. 5 we show a set of
order parameters obtained from MC simulation of the simple second rank
attractive pair potential [19, 22]:

U(ωij) = −εij{P2(cosβij) + 2λ[R2
02(ωij) +R2

20(ωij)]
+ 4λ2R2

22(ωij)} (64)

with the biaxial molecules, or “spins”, fixed at the sites of a three dimen-
sional cubic lattice. The coupling parameter, εij , is taken to be a positive
constant, ε when particles i and j are nearest neighbors and zero otherwise.
ωij is the relative orientation of the molecular pair. The biaxiality parame-
ter λ accounts for the deviation from cylindrical molecular symmetry: when
λ is zero, the potential reduces to the Lebwohl-Lasher P2 potential, while
for λ different from zero the particles tend to align not only their major
axis, but also their faces. The value λ = 1/

√
6 marks the boundary between

a system of prolate (λ < 1/
√
6) and oblate molecules (λ > 1/

√
6) [20].

We notice the different temperature dependence and the different mag-
nitude of the four order parameters. Given the numerical errors inevitable in
computer simulation results, e.g. those associated with finite size, the order
parameter 〈R2

22〉 can be recommended as a particularly effective monitor of
the biaxial transition.

4. Pair properties

4.1. PAIR DISTRIBUTION

We can define a positional–orientational pair distribution using once more
delta functions as counting devices:

P (2)(r1ω1, r2, ω2)/[N(N − 1)] = 〈δ(r1 − r′1)δ(ω1 − ω′
1)δ(r2 − r′2)δ(ω2 − ω′

2)〉.
(65)

As the separation between the particles becomes very large the probability
of finding molecule 1 at (r1, ω1) and molecule 2 at (r2, ω2) will be the
product of these two independent events and the pair distribution will tend
to the product of two single particle ones.

lim
r→∞ 〈δ(r1 − r′1)δ(ω1 − ω′

1)δ(r2 − r′2)δ(ω2 − ω′
2)〉

= 〈δ(r1 − r′1)δ(ω1 − ω′
1)〉 〈δ(r2 − r′2)δ(ω2 − ω′

2)〉 (66)

Thus it is convenient to write, for uniform systems

P (2)(r1, ω1, r2, ω2) ≡ ρ2G(r12, ω1, ω2)
= ρ2P (ω1)P (ω2)g(r12, ω1, ω2). (67)
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The reduced pair distribution function g(r12, ω1, ω2) introduced in eq.67
expresses a spatial - orientational correlation function or simply a pair cor-
relation function. We have

lim
r12→∞ g(r12, ω1, ω2) = 1 (68)

i.e. the density of particles at large distances just becomes that of the bulk.
This limiting value is often subtracted from the g(r12, ω1, ω2) to define the
total correlation function

h(r12, ω1, ω2) = g(r12, ω1, ω2)− 1 (69)

or more generally

h(r1, ω1, r2, ω2) = g(r1, ω1, r2, ω2)− 1. (70)

It is also clear that at large separations the only orientational correlation
between particles will be that indirectly coming from the fact that both
molecule 1 and 2 are separately parallel to the same director, if that exists.
In particular no long range orientational correlations exist in a normal fluid.
Another limiting situation is obtained for very short distances. If the

molecules have a hard impenetrable core, there is vanishing probability
of finding a second particle nearer than a minimum approach distance
σ(r12, ω1, ω2) from the first one. Thus

g(r12, ω1, ω2) = 0, if r12 < σ(r12, ω1, ω2). (71)

4.2. STONE EXPANSION OF THE PAIR DISTRIBUTION

We have seen earlier on, when discussing the calculation of 〈P2〉 from MC
simulations, the advantages of using a rotational invariant description when
calculating order parameters for a sample where no field is applied and the
director could fluctuate from a configuration to the next. Here we wish
to discuss the calculation of suitable rotationally invariant pair properties.
The pair distribution can depend on orientations of the two molecules ω1, ω2

and on the intermolecular vector orientation (i.e. r12, not just r12) but only
through rotationally invariant combinations [23, 24, 25, 26, 4]. For example
if we have linear molecules with orientation defined by unit vectors û1, û2

the distribution could depend on û1 · û2, û1 · r12 , û2 · r12 and their powers,
but not on û1, û2, r12 by themselves. Let us now examine the general case

G(r, ω1, ω2) = g(r, ω1, ω2)P (ω1)P (ω2), (72)

where G(r, ω1, ω2), P (ωi) are the pair (cf. 67) and single particle distri-
bution functions and r = r2 − r1 = r12 is the intermolecular vector with
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Figure 6. The dipole space correlation S110(r) = − 1√
3
〈[û1 · û2]〉r for a system of

Gay-Berne particles with dipoles. The curves refer to central (a) and shifted (b) dipoles.
[27]

length r and orientation ωr = (αr, βr). The pair correlation (e.g. for uniaxial
molecules) can be expanded in Stone invariants (cf. Appendix)

g(ω1, ω2, r) =
∑

L1,L2,L3

gL1,L2,L3(r)SL1,L2,L3(ω1, ω2, ωr), (73)

where the expansion coefficients are defined as

gL1,L2,L3(r) =
∫
dω1 dω2 g(ω1, ω2, r)SL1,L2,L3 ∗(ω1, ω2, ωr)

=
(2L1 + 1)(2L2 + 1)(2L3 + 1)

256π5
SL1,L2,L3 ∗(r) (74)

Average rotational invariants as a function of inter-particle separation r
are extremely useful to describe the molecular organization in a liquid crys-
tal. As an example we show in fig. 6 the orientationally averaged rotational
invariant S110(r) for a system of elongated Gay-Berne particles with an ax-
ial dipole at the center or near the end of the molecule [27]. The invariant
shows that for central dipoles neighbouring dipoles tend to be antiparallel,
while the opposite is true for shifted dipoles. Indeed monolayer smectic liq-
uid crystals and modulated antiferroelectric bilayer stripe domains similar
to the experimentally observed “antiphase” structures [28] are obtained in
the two cases.

4.3. INTERMOLECULAR VECTOR CORRELATION FUNCTIONS

Given the anisotropy of liquid crystals, we can expect that pair distributions
along the director or transversal to it, for instance, can be quite different.
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More generally it is useful to define distributions along different orientations
ωr12 of the intermolecular vector relative to the director [29, 30, 18]:

g(r12, ωr12) =
∫
dr1 dω1 dω2 g(r1, ω1, r1 + r12, ω2)/

∫
dr1dω1dω2. (75)

This quantity gives the probability of finding a particle at a certain distance
r12 from a particle chosen as origin when their intermolecular vector has an
orientation ωr12 = (αr12 , βr12). For systems that are at most uniaxial, we
can consider orientations defined with respect to a laboratory system with
Z axis parallel to the director (perhaps after a suitable overall rotation of
the sample) and we do not need to consider the angle αr12 , so that the in-
termolecular vector distribution reduces to g(r12) = g(r12, βr12)/2π. In fig.
7 we see an example of g(r12, βr12) for a Gay-Berne system [18]. We notice
that the radial distribution is not isotropic even in the nematic phase and
that it changes quite significantly with temperature. The very low temper-
ature one (T ∗ = 1.8) shows that as we move from a molecule along the
z laboratory axis (cosβr = 1) a second molecule is found slightly below
the particle length σe. However if we move transversally to the director
(cosβr = 0) very sharp, well defined peaks appear, indicating structured-
ness in the layer. The characteristic double structure of the second peak
indicates for this structure an hexagonal ordering, as expected in a smectic
B or crystalline layer structure. It is convenient to expand g(r12, βr12) as

g(r12, βr12) = g0(r12)
∑
L

(2L+ 1)g+
L (r12)PL(cosβr12), (76)

where we have the standard radial distribution

g0(r12) =
1
2

∫
dβr12 sinβr12g(r12, βr12). (77)

This simple centre of mass, radial, distribution g0(r) on is very similar in the
isotropic and in the nematic phase. This is because the g0(r12) are mainly
structured at short range, and at short range liquid crystals are just like
normal liquids.
The set of quantities g+

L (r12) associated to the intermolecular vector
correlation function represent a sort of order parameters [29, 30]

g+
L (r12) =

1
2 g0(r12)

∫
dβr12 sinβr12g(r12, βr12)PL(cosβr12) (78)

= 〈PL(cosβr12)〉r12 . (79)

We can also define a pair density function along the director
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Figure 7. The intermolecular vector distribution g(r∗, βr) for a Gay-Berne potential at
various dimensionless temperatures T ∗ in the crystalline, smectic: T ∗ = 1.80 (a), 2.00
(b), nematic: T ∗ = 2.80 (c), 3.50 (d) and isotropic: T ∗ = 3.80 (e), 4.00 (f) phase [18].

Figure 8. The pair density g(z∗) for a Gay-Berne system [18].
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g(z) =
∫
dr r2dβr sinβrδ(r cosβr − z)g(r, βr)∫
dr r2dβr sinβrδ(r cosβr − z)

. (80)

The density g(z) will be sinusoidally varying in a smectic and essentially
constant in a nematic, as we see for a Gay-Berne fluid of elongated particles
in fig. 8 [18].

5. Thermodynamic observables

The distribution functions introduced earlier on can be used to write down
expressions for the various thermodynamic functions. Quite often these will
be too complicated to be practically applicable as such but they nevertheless
constitute the basis for approximate formulations or for algorithms to be
used in computer simulations. Some relevant formulas are given here.

5.1. ENERGY

The total configuration energy of a system of N particles is most often
assumed to be a sum of pairwise intermolecular contributions, and in turn
the observed average can be written in terms of the pair distribution. Using
the definition of pair correlation

U =
N−1∑
i=1

N∑
j=i+1

〈U(Xi,Xj)〉 (81)

=
1
2
ρ2

∫
dr1dω1dr2dω2G(r1ω1, r2, ω2)U(r1, ω1, r2, ω2) (82)

and for a uniform system

U =
V

2
ρ2

∫
dr12dω1dω2P (ω1)P (ω2)g(r12, ω1, ω2)U(r12, ω1, ω2). (83)

5.2. HEAT CAPACITY

If we differentiate the microscopic expression for the energy we can show
that the constant volume heat capacity is related to the mean square fluc-
tuations in the energy:

CV =
(
∂U

∂T

)
V

(84)

=
1

kBT 2

(
〈U2〉 − 〈U〉2

)
(85)

=
1
2
ρ2

∫
dr1dω1dr2dω2U(r1, ω1, r2, ω2)

∂

∂T
G(r1ω1, r2, ω2), (86)
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where kB is the Boltzmann constant and the last equation applies to tem-
perature independent potentials. Eq. 85 shows that the heat capacity is a
non-negative quantity.
Notice that the heat capacity is not a pairwise quantity, even if the

potential is a pairwise one. CV does not depend only on the pair distribution
at a given temperature but on its derivative. If we try to perform the
derivative we see that the microscopic expression depends on more than
two particles simultaneously. Thus the specific heat is really a collective
property and it is reasonable that it can change significantly and diverge
at a phase transition where the collective organization changes.

5.3. PRESSURE

The calculation of pressure provides an important observable and is also
essential for implementing proper isobaric control, e.g. in NPT MC sim-
ulations. To derive a molecular expression for the pressure we start from
the thermodynamic definition as a volume derivative of the free energy A
[31, 32]

P = −
(
∂A
∂V

)
T

(87)

= kBT

(
∂ lnQN

∂V

)
T
. (88)

We can render the volume dependence of the configurational integral QN

an explicit one by changing the positional variable ri to dimensionless units
si. Thus we let

ri = V
1
3 si. (89)

and find

QN =
V N

N !

∫
{ds}N{dω}Ne−U({s,ω}N )/kBT , (90)

which gives

P =
NkBT

V
− V N

ZN

∫
{ds}N{dω}N ∂U({s, ω}N )

∂V
e−U({s,ω}N )/kBT

=
NkBT

V
− 〈∂U({r, ω}

N )
∂V

〉. (91)

The volume derivative of the potential energy is

∂U({r, ω}N )
∂V

=
∑
i

∂

∂ri
U({r, ω}N ) · ∂ri

∂V
, (92)
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where ∂/∂riU is the potential gradient. Since

∂ri
∂V
=
1
3V

ri, (93)

we find the virial equation [31, 4]

P =
NkBT

V
− 1
3V

〈
∑
i

ri · ∇iU({r, ω}N )〉. (94)

For the special case of a pairwise potential the volume derivative of the
potential energy in eq. 91 is

∂U({r, ω}N )
∂V

=
1
3V

∑
i<j

∂

∂rij
U(rij , ωi, ωj) · rij (95)

Notice that these expressions have to be modified is the potential energy
also depends directly on the volume, as is the case for instance of long range
Coulomb interactions summed with Ewald or reaction field formulas [33].

5.4. SURFACE TENSION

We consider two coexisting phases with a plane interface separating them
localized around z = 0. The thermodynamic definition relates the surface
tension γ to the variation in free energy as the area A is changed [3, 34]:

γ = −
(
∂A
∂A

)
TV

(96)

= kBT

(
∂ lnQN

∂A

)
TV

. (97)

To derive a molecular expression for the surface tension we can proceed as
we did for the pressure to get the a virial type expression, by making the
surface dependence of the configurational integral QN an explicit one by
changing the positional variable to dimensionless units. In practice we can
use

rx = A
1
2 sx,

∂rx
∂A
=

rx
2A

(98)

ry = A
1
2 sy,

∂ry
∂A
=

ry
2A

(99)

rz =
V

A
sz,

∂rz
∂A
= −rz

A
. (100)
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The surface tension can be written in terms of the average derivative of the
potential energy with respect to the area is, for a pairwise potential:

γ =

〈
∂U({r, ω}N )

∂A

〉
TV

(101)

=
1
2A

∑
i<j

〈
rij · ∂U(rij , ωi, ωj)

∂rij
− 3zij ∂U(rij , ωi, ωj)

∂zij

〉
TV

(102)

=
1
4Vz

∫ z

−z
dz

∑
i<j

〈(
xij

∂Uij
∂xij

+ yij
∂Uij
∂yij

)
− 2zij ∂Uij

∂zij

〉
TV

, (103)

where Uij = U(rij , ωi, ωj) and Vz is the volume of a thin layer L containing
the interface of thickness 2z and with area A equal to the sample cross
section [35].

6. Dynamic evolution of a molecular property

We now turn to briefly considering the calculation of dynamic properties
[36, 37, 38, 39, 40]. We start considering once more a system of N molecules
at equilibrium in a volume V at temperature T. The full distribution of the
system is

ρ0(Γ) ≡ 1
ZN
exp[−βH0(Γ)], (104)

where β ≡ 1/(kBT ) and Γ ≡ ({q,p}N ) = (q1,p1,q2,p2, . . . ,qN ,pN ) is the
set of coordinates and momenta needed to specify a point in phase space
and the unperturbed hamiltonian H0, is the sum of the potential U({q}N )
and kinetic K({p}N ) contributions:

H0({q}N , {p}N ) = U({q}N ) +K({p}N ) (105)

and correspondingly

ρ0(Γ) =
1
ZN
exp[−βU({q}N )] exp[−βK({p}N )] (106)

= P ({q}N )PM ({p}N ), (107)

where P ({q}N ) is the configurational probability studied earlier in this
chapter, where we have considered, {q}N = (q1,q2, . . . ,qN ), and each qi
can depend on a set of positions and orientations, Xi. PM ({p}N ) is the
Maxwell distribution of linear and angular momenta.
For a system described by an hamiltonian H the equations of motion

for coordinate and momenta are [41]

∂H
∂pi
= q̇i,

∂H
∂qi
= −ṗi. (108)
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The time derivative of a function A that depends on generalized coordinates
qi and momenta pi i.e. of the state point Γ, will be

Ȧ(t) =
∂A

∂t
+

∑
i

(
∂A

∂pi
· ṗi + ∂A

∂qi
· q̇i

)
(109)

=
∂A

∂t
+H×A. (110)

The differential Liouville operator or evolution operator H× is defined as

H× ≡ −
∑
i

(
∂H
∂qi

· ∂

∂pi
− ∂H
∂pi

· ∂

∂qi

)
(111)

=
∑
i

(
Fi · ∂

∂pi
+
1
mi

pi · ∂

∂qi

)
, (112)

where Fi is the force acting on molecule i. If ∂A/∂t = 0, the evolution of
A(t) is formally given by the so called Heisenberg evolution equation

A(t) = eH
×tA(0). (113)

In particular the evolution of the probability distribution ρ(Γ) at equilib-
rium is

dρ
dt
=

∂ρ

∂t
+H×ρ, (114)

but the total density must be conserved in time (ρ̇0(Γ) = 0) so that evolu-
tion takes place through the Liouville equation

∂ρ

∂t
= −H×ρ, (115)

where we have written

ρ ≡ ρ(Γ) =
1
ZN
exp[−βH(Γ)]. (116)

Thus if the hamiltonian is the unperturbed one H0, it does not modify the
equilibrium distribution ρ0

H×
0 ρ0 = H×

0

1
Z
e−βH0 = −β 1

Z
e−βH0H×

0 H0 = 0. (117)

In other words ρ0 is an eigenvector of the operator H×
0 corresponding to a

zero eigenvalue. Correspondingly for such a stationary system H×
0 〈A〉 = 0.

The evolution operator is a combination of derivatives and thus it follows
the standard rules of derivatives. For instance

H×(AB) = (H×A)B +A(H×B). (118)
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In particular, given the average of two properties A,B, we have H×
0 〈AB〉=0

and the antisymmetric relation

〈AH×
0 B〉 =

∫
dΓρ0AH×

0 B

= −〈(H×
0 A)B〉. (119)

More generally
〈AetH×

0 B〉 = 〈(e−tH×
0 A)B〉. (120)

The quantity just introduced is called an equilibrium time correlation func-
tion for properties A and B, CAB(t). In general it corresponds to an average
of a property A taken at a certain time t0 with the complex conjugate of a
property B taken at time t0 + t

CAB(t) = 〈A(t0)B∗(t0 + t)〉 (121)
= 〈A(0)B∗(t)〉 (122)

= 〈A(0)etH×
0 B∗(0)〉 (123)

=
∫
dΓA(Γ)etH

×
0 B∗(Γ)ρ0(Γ). (124)

Time correlation functions can be calculated from the sequence of instan-
taneous values of the observables taken along a Molecular Dynamics gen-
erated trajectory. Thus

CAB(t) ≈ 1
M − n

M−n∑
k=1

A(k∆t)B∗([k + n]∆t), t = n∆t. (125)

Since our system should be independent on where we start measuring the
time, there is no dependence on t0. We shall see in the next section that
correlation functions are directly linked to observable dynamic properties.
In this context it is useful to introduce also the Fourier-Laplace transform
of a correlation function is called spectral density

jAB(ω̂) =
∫
dt eiω̂tCAB(t) (126)

= 〈A(0) 1
H× − iω̂

B∗(0)〉. (127)

Here for simplicity we assume real quantities A,B.

7. Contact with experiment. Linear response theory

Let us consider the measurement of a property A of a molecular system
through the application of a weak measuring field f(t) [36, 37, 39, 40]. We
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assume that the field is switched on a time t = 0 and that it interacts with
the system through a perturbation hamiltonian

H1 = −B(Γ)f(t). (128)

The property coupling to the field B depends in the most general case on
the coordinates and the momenta of all molecules, B ≡ B(Γ) . We assume
that the observed value of property A changes from its static equilibrium
value in the absence of the field 〈A〉0. Since the applied field is weak the ob-
served non equilibrium value in the presence of the field at time t, 〈δA(t)〉f ,
should be linear in the field strength. Considering that the system may
not react instantaneously to the field, what we observe at time t is a sum
of the contributions from all possible time lags τ between application and
observation

〈δA(t)〉f =
∑
τi

KAB(τi)f(t− τi) (129)

=
∫ ∞

0
dτKAB(τ)f(t− τ). (130)

The observed value is a convolution of the field function f with a “ kernel”
KAB whose functional form depends on the type of applied field and the
observable property. The dynamics of molecular phenomena is most often
explored as a frequency dependence of a certain observable property rather
than a direct time dependence from a given starting event (there are excep-
tions of course, e.g. time domain fluorescence depolarization experiments).
We can write the Fourier-Laplace transform of the time dependent response
as

〈δÃ(ω̂)〉f ≡
∫ ∞

0
dt eiω̂t〈δA(t)〉f (131)

= χAB(ω̂)f̃(ω̂), (132)

where the Fourier-Laplace transform

χAB(ω̂) =
∫ ∞

0
dτKAB(τ)eiω̂τ (133)

is called a susceptibility. Thus the Fourier transform of a convolution inte-
gral of two functions is the product of the Fourier transform of the functions,
and this useful result is called the convolution theorem. The equation we
have just seen is macroscopic, but it is clear that if we could obtain a mi-
croscopic expression for the susceptibility we could be able to calculate the
response to a measuring field. The importance of Linear Response Theory
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is that it gives a molecular interpretation to the susceptibility in terms of
fluctuations of the unperturbed system.

8. Evolution in the presence of a perturbation

When the time dependent perturbation H1(t) = −B(Γ)f(t) is added, so
that

H(t) = H0 +H1(t), (134)

the perturbation produces an evolution of ρ0:

H×
1 (t)ρ0 = −β 1

Z
e−βH0H×

1 (t)H0 (135)

= −βρ0Ḃf(t) (136)

since using the definition of H×

H×
1 (t)H0 = −H×

0 H1(t) (137)
= f(t)H×

0 B(Γ)

= f(t)Ḃ. (138)

In the presence of H1(t) the distribution becomes at first order

ρ(t) = ρ0 + δρ(t) (139)

and the non equilibrium value is

〈δA(t)〉f =
∫
dΓA(Γ)δρ(t). (140)

From the Liouville equation we have substituting eq. 139 and keeping only
linear terms

˙δρ(t) = −H×
0 δρ−H×

1 (t)ρ0

= −H×
0 δρ+ βρ0f(t)Ḃ. (141)

This is a simple first order linear equation whose general solution is available1

1The known differential equation is ẏ(t) + Py = Q(t) if P = H×
0 , Q(t) = −βρ0Ḣ1

that with y = y0 when t = t0 has the solution

ePty − ePt0y0 =

∫ t

t0

ePt′Q(t′)dt′
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δρ(t) = β

∫ t

−∞
dt′e[(t

′−t)H×
0 ]ρ0Ḃf(t′). (142)

Substituting in eq. 140

〈δA(t)〉f = β

∫ t

−∞
dt′f(t′)

∫
dΓA(Γ)e[(t

′−t)H×
0 ]Ḃ(Γ)ρ0(Γ)

= β

∫ t

−∞
dt′f(t′)

∫
dΓA(0)Ḃ(t′ − t)ρ0(Γ)

= β

∫ 0

−∞
dτf(τ + t)CAḂ(τ), (143)

where we have shifted the time origin (τ = t′ − t). We can do one further
manipulation noticing that

CAḂ(t) =
d

dt
CAB(t) (144)

and that the correlation CAB(t) is invariant for time reversal

CAB(t) = C∗
AB(−t) (145)

and then
CAḂ(t) = −CAḂ(−t). (146)

We can then write our final result

〈δA(t)〉f = −β
∫ ∞

0
dτf(t− τ)CAḂ(τ). (147)

Thus Linear Response theory shows that the change observed in a property
A when the perturbation −Bf(t) is switched on at time 0 can be obtained
simply from equilibrium time correlation functions 〈A(0)B∗(t)〉 that we
can calculate in the absence of the perturbation, for instance from molec-
ular dynamics simulations of the unperturbed system. Taking the Fourier
transform and comparing with eq. 132

χAB(ω̂) = −β
∫ ∞

0
CAḂ(τ)e

iω̂τdτ. (148)

The resulting expression for the susceptivity is quite simple:

χAB(ω̂) = βCAB(0) + iω̂β

∫ ∞

0
CAB(τ)eiω̂τdτ, (149)

where CAB(τ) is the correlation function for the two properties A, B.
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9. Theory of dielectric response

As an example of application of Linear Response theory we obtain equations
for the dielectric response of a material [42], for an idealized case where
the problem of connecting the applied external field with that felt by the
molecules [43] can be ignored. Let us consider a system of N molecules with
permanent dipole moments µi to which a uniform external electric field i.e.
E(t) = E0 exp(iω̂t) is applied. The system has a total dipole moment

M =
1
N

N∑
i

µi, (150)

while the general perturbation hamiltonian H1 = −B(Γ)f(t) becomes

H1 = −M({ωi}N ) ·E(t). (151)

Notice that molecular positions have not been included since the field is
assumed to be the same at every position. The expression for the dielectric
susceptivity follows from general linear response theory as:

χMM(ω̂) = − 1
kTB

∫ ∞

0
CMṀ(τ)e

iω̂τdτ (152)

χMM(ω̂) =
1

kTB

(
〈MM〉+ iω̂

∫ ∞

0
CMM(τ)eiω̂τdτ

)
, (153)

where CMM(τ) is the dipole correlation function

CMM(t) = 〈M(0)M(t)〉 (154)

and we assume 〈M(t)〉 = 0.
A large number of dynamic properties and transport coefficients can be
formulated in a similar way in terms of equilibrium correlation functions
[44, 37, 38].
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Appendix

ROTATIONAL INVARIANTS

We often need to consider invariant functions of the position and orientation
of two molecules f(r1ω1, r2ω2). We assume that the function should be
translationally invariant

f(r1ω1, r2ω2) = f(R+ r1ω1,R+ r2ω2). (155)

This implies that the most general function will be

f(r12, ω1, ω2) = f(r12, ωr, ω1, ω2), (156)

where r12 ≡ r1 − r2 is the inter-centre vector with orientation ωr. The
function should also be invariant for an arbitrary rotation of the labora-
tory frame. General rotationally invariant combinations can be constructed
following Blum and Torruella [24] and Stone [25]. f(r12, ωr, ω1, ω2) can be
expanded in a basis of products of three Wigner rotation matrices

DJ1∗
m1n1
(ω1L′)DJ2∗

m2n2
(ω2L′)DJ

m0(ωrL′), (157)

where the last subscript is zero because only the two angle αr, βr are needed
to specify the intermolecular vector orientation. Thus we proceed to a sym-
metrization of these products by performing first an arbitrary rotation ωLL′

from L′ to L. Using the closure relation of Wigner matrices [1] the original
rotation from the laboratory can be rewritten starting from an arbitrary
auxiliary frame L

DJ∗
m,n(ω1L′) =

J∑
q=−J

DJ
qm(ωL′L)DJ∗

q,n(ω1L). (158)

Summation on all possible orientations (ωLL′) using the integral of three
Wigner rotation matrices (Gaunt formula)[1] :∫

dωLL′DJ∗
qm(ωLL′)DJ2

q2m2
(ωLL′)DJ1

q1m1
(ωLL′)

=
8π2

(2J + 1)
δq1+q2,qδm1+m2,mC(J1J2J ; q1q2)C(JJ ′J ′′;m1m2)

(159)

gives

RDJ
m0(ωrL)D

J2∗
m2,n2

(ω2L)DJ1∗
m1,n1

(ω1L)

=
8π2

(2J + 1)
C(JJ ′J ′′;m1m2)∑

q1,q2

C(J1J2J ; q1q2)DJ1∗
q1,n1
(ω1L)DJ2∗

q2,n2
(ω2L)DJ

q,0(ωrL). (160)
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The quantity on the right is a rotationally invariant combination of the
three orientations and could be used to define, apart from a constant, a
useful invariant basis. In particular we use the rotationally invariant func-
tions Sk1k2

J1J2J
(ω1, ω2, ωr), as defined by Stone [25], which read in our notation

Sk1,k2

J1,J2J
(ω1, ω2, ωr) =

(i)J1−J2−J
√
2J + 1

×
∑

m1,m2

C(J1J2J ;−m1 −m2)DJ1∗
m1,k1

(ω1)DJ2∗
m2,k2

(ω2)DJ
−m1−m2,0(ωr).

(161)

Using this definition and the properties of Clebsch - Gordan coefficients,
we find the complex conjugate of the rotational invariant as

Sk1,k2∗
J1,J2J(ω1, ω2, ωr) = (−1)k1+k2S−k1,−k2

J1,J2J
(ω1, ω2, ωr). (162)

The rotational invariants form an orthogonal basis of functions for the space
{ω1, ω2, ωr}:∫

dω1dω2dωr Sk1k2∗
J1,J2,J

(ω1, ω2, ωr)S
k′1k

′
2

J ′
1,J

′
2,J

′(ω1, ω2, ωr)

=
256π5δJ1,J ′

1
δJ2,J ′

2
δJ,J ′δk1,k′1δk2,k′2

(2J1 + 1)(2J2 + 1)(2J + 1)
(163)

and can be used to expand the intermolecular potential [25, 26] or the pair
correlation function[24, 15]. The expansion of an arbitrary function will be

f(r12, ω1, ω2, ωr) =
∑

J1,J2,J
k1,k2

fJ1,J2J
k1,k2

(r12)S
k1,k2

J1,J2J
(ω1, ω2, ωr). (164)

Since the expansion is valid in an arbitrary frame, we can in particular
adopt the intermolecular frame, with z axis along the inter-centre axis and
ωr = (000). Thus DJ∗−m1−m2,0(ωr) = δm1,m2

f(r12, ω1, ω2, ωr) =
∑

J1,J2J
k1,k2

fJ1,J2J
k1,k2

(r12)
(i)J1−J2−J
√
2J + 1

×
∑
m1

C(J1J2J ;−m1 −m1)DJ1∗
m1,k1

(ω1)DJ2∗
m1,k2

(ω2)

≡
∑

J1,J2,J
k1,k2,m1

fJ1,J2,J
k1,k2,m1

(r12)DJ1∗
m1,k1

(ω1)DJ2∗
m1,k2

(ω2). (165)
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Thus we can switch from a space fixed to a molecule fixed expansion writing
the expansion coefficients of one representation in terms of those of the
other:

fJ1,J2J
k1,k2

(r12) =
∑
m1

(i)J1−J2−J
√
2J + 1

C(J1J2J ;−m1 −m1)f
J1,J2

k1,k2,m1
(r12). (166)

For uniaxial molecules we only need the subset

SJ1,J2,J(ω1, ω2, ωr) ≡ S00
J1,J2,J(ω1, ω2, ωr)

=
iJ2−J1−J

(2J + 1)1/2
∑

m1,m2

(−)m1+m2C(J1, J2, J ;m1,m2)

× DJ1 ∗
m1,0
(ω1)DJ2 ∗

m2,0
(ω2)DJ ∗

−m1−m2,0(ωr). (167)

The first few rotational invariants for uniaxial molecules are, in cartesian
terms, and using the unit vectors û1, û2 along the z axis of the two molecules
[25]

S000 = 1 (168)

S110 = − 1√
3
û1 · û2 (169)

S101 = − 1√
3
û1 · r̂12 (170)

S011 = +
1√
3
û2 · r̂12 (171)

S112 =
1√
30
[û1 · z2 − 3(û1 · r̂12)(û2 · r̂12)] (172)

S121 =
1√
30
[(û1 · r̂12)− 3(û1 · û2)(û2 · r̂12)] (173)

S211 = − 1√
30
[(û2 · r̂12)− 3(û1 · û2)(û1 · r̂12)] (174)

S220 =
1
2
√
5
[3(û1 · û2)2 − 1] (175)

S202 =
1
2
√
5
[3(û1 · r̂12)2 − 1] (176)

S022 =
1
2
√
5
[3(û2 · r̂12)2 − 1] (177)

S222 =
1√
70
[2− 3(û1 · û2)2 − 3(û1 · r̂12)2 − 3(û2 · r̂12)2

+9(û1 · û2)(û1 · r̂12)(û2 · r̂12)] (178)
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S224 =
1
4
√
70
[1 + 2(û1 · û2)2 − 5(û1 · r̂12)2

−5(û2 · r̂12)2 − 20(û1 · û2)(û1 · r̂12)(û2 · r̂12)
+35(û1 · r̂12)2(û2 · r̂12)2] (179)

S242 =
1
4
√
70
[1− 5(û1 · û2)2 + 2(û1 · r̂12)2 − 5(û2 · r̂12)2

−20(û1 · û2)(û1 · r̂12)(û2 · r̂12) + 35(û1 · û2)2(û2 · r̂12)2].
(180)

Higher invariants can be generated e.g. using the coupling formula of two
rotational invariants, obtained from the coupling formulae for Wigner ro-
tation matrices [26].
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42. Böttcher, C.J.F. and Bordewijk, P. (1978) Theory of Electric Polarization. vol. II,
Elsevier.

43. Luckhurst, G.R. and Zannoni, C. (1975) Proc. Roy. Soc., A343.
44. Gordon, R.G. (1968) Advances in Magnetic Resonance.Waugh, J.S. (ed.), Academic
Press, 3, p. 1.




