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A Monte Carlo method for studying anisotropic systems with a new type of boundary conditions
is proposed. The missing interactions at the sample box surface are replaced by interactions with
ghost molecules. The orientations of these ghost particles are sampled from a “least biased”
singlet distribution obtained self-consistently from the order parameter inside the sample. The
method is tested on the Lebwohl-Lasher model with 125 and 1000 particles. Results for the
transition temperature and order parameters are in good agreement with those obtained from
simulation of much larger systems. The method is fairly general and should be applicable in a
variety of simulations. Here we show that it can also be used to study director fluctuations in

nematogen models.

I. INTRODUCTION
16

Computer simulations of anisotropic systems'™'¢ are
complex and especially time consuming. They have been
mostly confined to lattice models, where the intermolecular
potential is assumed to depend on the orientation of particles
whose position is kept fixed.® A lot of experience has been
accumulated on some of these models and particularly on
the Lebwohl-Lasher (LL) model' where the pair potential is
taken to be

U, = _EijPZ(cosﬂij)! : (H

where €; ; is a positive constant, €, for nearest-neighbors par-
ticles i andj and 3, is the angle between the axis of these two
molecules. Study of the LL model has shown that fairly large
systems are necessary for an accurate determination of the
transition temperature 7T,;. Monte Carlo calculations with
periodic boundary conditions (PBMC) seem to indicate that
getting a 1% accuracy on T, requires at least a 20X 20X 20
particles system.">%%'>1> A calculation involving a few
thousand particles with a single interaction center and short-
range couplings can be performed with present computers.
However, it rapidly becomes an impracticable task as we
increase the number of interaction centers or in general
choose a more realistic potential. Thus, for example, a very
complex system of p, p’-pentyl-cyanobiphenyl model mole-
cules has been recently treated® but only 64 particles were
considered. Facing this computer experimental situation we
have, at least for the LL model, a number of approximate
theoretical treatments such as a simple molecular field (MF)
theory"” and a few two to four site cluster calculations'®?° as
well as continuum-type theories, etc.”! For the more com-
plex potentials, e.g., the smectogen ones, only the molecular
field treatment is normally available. The MF theory actual-
ly works quite well in predicting the temperature depen-
dence of the order parameters vs reduced temperature. On
the other hand, MF greatly overestimates the transition tem-
perature, e.g., the MF T, is at T* = kT /e = 1.321, while
values of 1.119,% 1.124,' and 1.127'? have been found from
Monte Carlo simulation of the LL model with 8000 parti-
cles. The two site cluster treatment gives a better estimate
(1.1598) and the four site cluster method gives a value for the
transition temperature of 1.142?° which is 1.5%-2% too
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high but comparable with what is obtained with the MC
method by studying a sample of 1000 particles.'? However,
the order parameter and the change in internal energy at the
transition are not so markedly improved so that in this re-
spect things should be improved upon the traditional cluster
methods anyway. '

The essence of the cluster methods is that of treating
exactly interactions within a group of particles, which is in
turn embedded in an average field produced by all the ne-
glected particles. It is thus surprising in a way that a MC
calculation which treats exactly the interaction between a
few hundred molecules should not give even better results
for the transition temperature. The answer could lie in the
type of boundary conditions employed. We know that in
general??>-? the effect of periodic boundary conditions (PBC)
is that of enhancing interparticle correlations and thus that
of increasing the transition temperature. On the other ex-
treme, free space boundary conditions underestimate the in-
teraction of our sample with the outside world and generally
underestimate the transition temperature. In his pioneering
work on spin systems, Binder has used the approximation of
an external magnetic field whose strength is adjusted self-
consistently.?? In that approach interactions with the mole-
cules outside the sample box are replaced with interactions
with this field. In the next section we wish to propose an-
other type of boundary conditions which seems more general
and in particular more easily applicable to the complex situa-
tions with multiple order parameters arising in anisotropic
systems. The method chooses an environment outside the
sample box using self-consistency and information the-
ory?*? principles. As we shall see it retains some flavor of
the cluster approaches and it seems appropriate calling it
cluster Monte Carlo (CMC} method.

Il. THE CLUSTER MONTE CARLO (CMC) METHOD

We start by considering a lattice subsystem B of N parti-
cles which is part of an asymptotically large system (a
“world”) W of N, identical particles. The molecules are de-
fined by their orientational positional state variable X; and
interact through a pairwise potential of a certain effective
range. This range defines in turn a natural boundary area
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between the sample of N molecules inside the virtual box B
and the world of N,;, particles outside. This is schematically
~ represented in two dimensions in Fig. 1 for a square lattice
. system with nearest-neighbor interactions.

The total potential energy U, for the global system of
N; = N + Ny, particles can be written as

Us =Up + Upw + Uy i (2)
where
N N
Up=Y Y Uy withi<j (3)

’ i=1j=1
is the contribution from particles which are all inside the
sample box, while

N - Ng
UBW=_2 ) z U, ' : (4)
i=1j=N+1

comes from the interaction between molecules inside and
outside. Finally U, is a purely external energy, i.e.,

Ng Ng

i=N+1j=N+1

The global canonical average of a quantity A
= A (X,X,,...,Xy) dependent only on the state of the parti-

cles in our virtual box is

Up= Y 3 Uy i<i 5

(A)e = (I/ZG)de, dX, - dX,
X exp( — Up/kT)A (X, Xp,- X )
deXN+ldXN+2...dXNG

Xexp( — Uy /kT Jexp( — Ugy /kT), (6)

where k is the Boltzmann constant, T the temperature, and
Z the global configurational integral, '

Zs = f dX,dX, --dXy,_exp(— Ug/kT). (7)

Our aim is to rewrite (4 ) ; in a form amenable to some

kind of MC calculation. We notice first that for a certain
configuration W of the outside world the average of 4 is
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FIG. 1. A schematic representation of a virtual sample box Bembedded ina
very large system W. The boundary particles of W which directly interact
with the internal ones in the case of nearest-neighbor coupling are enclosed
by the additional dashed line.

4w =(1/ZB[W])deldX2...dXN

Xexp[ — (Up + Upy)/kT J4 (X,,.... X y),
’ (8)

- where we have-defined the configuration integral for the box

molecules given a certain configuration [W] of the outside
world

Zyiw) =fdx, dXy - -dXy exp[ — (Up + Upy /AT ].
9)

- We can now rewrite (4 )5 as an average over the outside

configurations (- - ), of (4 ), , since
A)s = (I/ZG)deN+1 wdXy,
Xexp(— Up/KTYA ) w1 Zp 1w,
= f D SRS W0 1 SRS S L7 D T

=<<A >[W]>W' (10)

" Here we have introduced the outside molecules distribution

P Xy 4 13Xn,) = (1/Zg)exp( — Uy /KT) f dX,.dXy

Xexp[(— Up + Upw)/kT ]

=exp(— Up/kT)Zy /' Zg (11)
and we have used the fact that N, > N. One way of approxi-
mating the average over the outside world is through impor-
tance sampling, considering a finite number of configura-
tions M, for the molecules outside the box, i.e.,

(4 >G'Z(1/MW)[Z] A)w - (12)

Notice that each average (4 ), ; can be calculated with
ordinary Monte Carlo when the outside configuration is
known. The problem of approximating (4 ) based on just
an N particles simulation then becomes that of generating
suitably sampled outside configurations. To this end we have
to discuss the distribution P, . In the idealized simulation
over all N, molecules our N particles MC sample is just a
subsystem of a very large one without surface effects. In this
case all the m particles distributions inside and outside the
virtual box (as well as across the interface) have to be the
same:

PMX, X,,...X,,) =P (X, X,5...X,,); m<N. (13)

In particular, the distribution needed to average the surface
term in Egs. (9) and (11) would equal the corresponding in-
side distribution thus giving a self-consistency condition. As
aspecial case this implies that the singlet distribution outside
the sample should equal that inside, i.e.,

PRIX) = PLL(X). (14)
If we expand this singlet distribution inside and outside
in the same orthogonal basis set*® we get at once that the

expansion coefficients, i.e., the order parameters inside and
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outside should be the same. In the purely orientational case
expansion in a Wigner basis gives for a system of rigid parti-
cles (see, e.g., Ref. 26)

(Dfnn in =<D£‘nn out* (15)

We assume the N-particle sample to be big enough to
allow definition of meaningful statistical averages based on
just the particles inside, so that, e.g., the left-hand side of
Egs. (13) and (14} can be determined. Thus if we knew at least
the singlet distribution inside we could generate all the state
variables X, necessary to replace the missing interactions by
assuming the outside distribution to be a product of singlet
ones and sampling from this distribution. This is not trivial
since the distribution inside the sample is not known. We
shall use Information Theory as an aid in this respect and
illustrate this for the simple case where orientations only are
relevant. First we assume that there exists a symmetry
breaking field direction, say along the Z laboratory axis and
that the less symmetric phase is at most uniaxial around this
direction. We can then calculate the order parameters with
respect to this direction, which for cylindrically symmetric
particles are just the Legendre polynomials averages (P, ),
with L even, i.e., (P,), {(P,),... . Armed with these observa-

bles we can construct the best information theory**? infer-
ence for the molecular distribution outside, i.e.,
P(x):exp[z aLPL(x)}, x =cos 3, (16)
L

where the coefficients @, are determined from the constraint
that the available (P, ) can be reobtained by averaging P, {x)
over the distribution in Eq. (16),

1 1
(Py) = f dx P, (x)P (x)/f dx P(x),  with L even.
0 0
. {17)
In the present paper we confine ourselves to the simplest
approximation in the sequence, i.e., that obtained from a

knowledge of just (P,);,. Thus we assume the ghost mole-
cules singlet distribution to be

P(x) = (1/Z)expla,Pyx)], ‘ (18)

~ with Z a normalization coefficient and a, determined from
the constraint that (P,) calculated from Eq. (17) satisfies

(P2>out = <P2>in' (19)
Equation (18) i'epresents the least biased inference for

the distribution P (x) in terms of its second moment only. In -

practice ghost molecule orientations are sampled from this
distribution thus creating in a self-consistent way a privi-
ledged laboratory direction. In a sense we are simulating
interactions with the outside with a inhomogeneously fluc-
tuating surface field whose average strength is proportional
to the order parameter inside. The director pinning effect
will thus be larger at lower temperatures while it will essen-
tially vanish in the isotropic phase. This is of course different
from the case of a true external field which acts on all mole-
cules and whose strength is independent of the ordering in-
side. In this case a field induced ordering in the isotropic
phase is likely to be observed. Notice also that we have a
clear pathway for improving upon our approximation. In
particular pair distribution sampling can be considered by a

straighforward generalization of the present approach.
Hence, however, we wish to test the method using the sim-
plest approximation and see how this performs.

IN. DETAILS OF THE CALCULATION

We have studied systems of particles interacting with
the LL potential Eq. (1) on a simple cubic lattice with dimen-
sions 5X5X5 and 10X 10X 10. As we havé already dis-
cussed in the previous section, we consider here a second
moment estimate of the singlet distribution for the particles

- outside the sample box, as in Eq. (18). In practice the calcula-

tion is started from a completely aligned system at low tem-
peratures or, where available, from an already equilibrated
configuration at a lower temperature. The ordinary Metro-
polis Monte Carlo procedure is then used to follow the sys-
tem evolution for a certain number of cycles, i.e., of sets of N
attempted moves. Every cycle each particle is selected at
random for trial move using a simple random shuffling algo-
rithm.?”” This ensures that each molecule attempts a move
every cycle, without the regularity involved in moving the
particles sequentially.”® After a preequilibration period the
order parameter (P,) inside the sample is calculated. This
identifies the parameter a, and thus the distribution in Eq.
{18) from which new orientations for the ghost particles out-
side the box are sampled. We generate the orientations of
these external ghosts molecules using a simple rejection
technique, as follows. First we extract a uniformly distribut-
ed random number x;, — 1<xz <1 representing a trial ori-
entation, x, = cos 8. Then we compare another random
number, y, uniform in the range 1 to P (1) with the value of the
distribution P (x ) [cf. Eq. (18}] at that point. The orientation
xg is accepted only if y<Plxg). It is then checked that the
order parameter outside is the same as that inside to an ac-
ceptable threshold (here 0.006) and the generation is repeat-
ed if this is not the case. The energy of the system is then
recalculated and evolution proceeds as before. Notice that
the total energy for the N particles system with V' ghosts is

N N+ N’ ’
U= — z Z €;;Py(cos B,;;); withi<j. (20)
i=1j=N+1

For the simple cubic lattice N = L 3, with L the number
of particles on each side and N’ = 6L 2. The total number of
interactionsin Eq. (20)is 3L > + 3L 2sothat the average ener-
gy U* = (U )/Ne per particle is

U*= —(z/2+3/L)o, ' (21)
in terms of the short-range-order parameter ¢, while in
PBMC we have ‘

U*= —(z/2)0,. (22)

The order parameter with respect to the Z lab direction P is
calculated every cycle J for the molecules inside the box.
After a certain number of cycles M an average is calculated
for this K trajectory segment

(PR =(1/M) 3 P3, (23)

together with the attendant standard deviation o . This or-
der parameter is then compared to the one outside and if the
difference between the two is statistically significant to a sat-
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isfactory confidence level (here 0.05)*° a new set of orienta-
tions for the ghost molecules is generated using the new or-
der parameter. If the order inside and outside are not
significantly different the orientations outside are kept and
the next check is made after a longer segment, i.e., My ,

> M. The number of cycles M is instead left unchanged if
the order was adjusted. This ensures that on one hand we do
not choose an incorrect order parameter outside and leave it
unchanged. On the other hand since every change of the
outside layer will lower the short-range correlation at the
interface this method takes care to do the updating only if
really needed and not on every cycle or on the basis of some
wild fluctuation.

Equilibration runs of at least 4000 cycles have been dis-
carded before starting production. Production runs were of
at least 10 000 cycles and up to 50 000 cycles near the transi-
tion for the 5 5X 5 system and of 6000 to 30 000 cycles for
the 10X 10X 10size. Each calculation was divided in runs of
1000 to 2000 cycles. Statistical errors have been estimated as
standard deviations from the average over these runs. Dur-
ing the production run various observables have been calcu-
lated in addition to the internal energy and second-rank or-
der parameter calculated at every cycle as already described.
The results obtained are presented and discussed in the next
section.

IV. RESULTS AND DISCUSSION
A. Computer calorimetry

The results of the CMC simulation for the dimension-
less energy U * = (U /Ne) at the various reduced tempera-
tures T* = kT /e studied are shown in Fig. 2 for the two
sample sizes of 125 and 1000 particles. We see clearly that a
sharp change of slope occurs for both cases suggesting the
onset of a first-order transition. The two curves in Figs. 2(A)
and 2(B) have similar shape but the smaller system is, as we

might expect, systematically more ordered than the larger

one. We notice also that the energy data are somewhat noi-
sier than similar data for PBMC. We think this effect is relat-
ed to the rather abrupt changes produced in the configura-
tions chain when the outside molecules are updated. This

contrasts with the situation in ordinary MC where the var-

ious configurations produced by the small changes needed to
keep a reasonable acceptance ratio are often too correlated,
thus leading to too small and unrealistically low errors when
analyzed with a standard statistics which assumes uncorre-
lated data, samples.*®

The heat capacity of the system C % has been evaluated
by differentiating U * with respect to T *. This is done by first
fitting a smoothing curve to the data points (ICSSCV or
ICSMOU from IMSL?!) then taking the derivative. These
results are shown in Fig. 3 for the two systems. They show
clearly the peak mimicking the expected divergence both for
the 5X 5% 5 and the 10X 10X 101attice. Notice that even for
the small system the peak is sharper than the one obtained
for a 10X 10X 10 system with PBC.'?> We identify the orien-

tational transition temperature with the position of the heat

capacity maximum®’ and find the values reported in Table I.
The error estimates quoted are obtained from the uncertain-

A
0.0
0.5 |
<U*> oo ©° P
-1.0 &
‘ i %
>
1.5 | &
&
)
-2.0 o
0L e
_2.5 i 1 l
0.9 1.1 1.3
T*
B
0.0
_ -0.5 |
<U#> ‘@mvo @
-1.0 L . ®
s | &Ma
Q'Dm
-2.0 L °°
_2.5 1 1 1
. 0.9 1.1 1.3
T*

FIG. 2. Theaverage reduced energy (U *) vs temperature 7 * obtained from
CMC simulation for the 5X 5X 5 (A} and for the 10 X 10 X 10 (B} lattice.

ty in locating the maximum in C% (cf. Appendix). It is im-
portant to notice that the CMC method gives a transition
temperature in excellent agreement with that obtained by
PBC on larger size systems.''*'> On one hand this is a con-
forting check of the technique against a very well established
one. On the other it indicates that we have not introduced
spurious effects with the implementation of the method de-
scribed in the previous section.

B. Order parameters

One essential part of any simulation of anisotropic sys-
tems is the calculation of order parameters. This presents no
particular problem in the present method since we have a
symmetry breaking direction. We have calculated (P,) and
(P,) with respect to this direction, finding the results plotted
in Figs. 4 and 5. The order parameter calculated for the
10X 10X 10 system is slightly lower. However, the two
curves are very similar and become nearly superimposable if
the slight shift in transition temperature is accounted for.
Values of the order parameter at the transition were estimat-
ed from the values corresponding to the temperature T%,
previously determined. The values found in this way are
again given in Table I In the transition region the data are
rather noisy especially for the smaller system. They also
show indications of bistability as expected when solving self-
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FIG. 3. The heat capacity C3% obtained by differentiation of the energy

(U*) with respect to T* for the 5X 5X5 (A} and for the 10X 10 10 (B)
system. .

consistent equations near a first-order transition. However
this effect is very close to the error limit of the calculation for
these sample sizes and a detailed analysis of the transition
region would certainly require further work beyond the
scope of the present paper. In the normal PBMC simulations
the calculation of order parameters is relatively complicated
by the absence of a symmetry breaking direction. Thus an
order parameter with respect to the instantaneous director is
usually introduced as follows.>® First a suitable ordering
matrix is defined as

Qo = z 9iaGis — (1/3)8,5; ab=2xypz, (24)
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FIG. 4. The second rank order parameter calculated with respect to the
laboratory symmetry breaking direction, (P,), as a function of temperature
T* for lattice size 5X 5X 5 {A) and 10X 10X 10 (B).

where, e.g., g, . is the x component of the unit vector g, speci-
fying the orientation of the ith particle and the sum is ex-
tended to all the particles in the system. An order parameter
{P,), is then defined in terms of the largest eigenvalue, A 5, of
Q, while the corresponding eigenvector gives the direction of
maximum alignment. This order parameter has been calcu-
lated in the present work by computing and diagonalizing Q
at every cycle and averaging A,

<Pz>/1 = (3/2)0*3)- (25)

Notice that Q is traceless so that 4,>0 and (P,), >0. The
order parameter (P,), is plotted in Fig. 6 for the two sys-

TABLE I. A comparison of the orientational transition properties for the Lebwohl-Lasher model obtained in the present work with those of other simula-
tions on the same model using periodic boundary conditions. Here  is the number of particles, T'%, the estimated transition temperature and (P,), (P,),,

and (P,) are order parameters as described in the text.

N T*, (P,) Py, (P,) Reference
125 1.133 + 0.08 0.30 £ 0.05 0.36 + 0.05 0.070 + 0.003 this work
1000 1.128 4 0.003 0.24 4+ 0.03 " 0.274+£0.03 0.047 + 0.002 this work
1000 1.145 + 0.005 ‘e v Ref. 12
8000 1.127 + 0.003 0.27+002 Ref. 13
8000 1.119 4+ 0.001 0.33 4 0.04 Ref. 5
8000 1.124 4+ 0.006 0.38 + 0.04 Ref. 1
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FIG. 5. Same as Fig. 4 but for the fourth rank order parameter (P,).

tems of different size and we see that it does not go quite to
zero above the transition. The same behavior is of course
found in PBMC and somewhat contrasts with our expecta-
tion of what an order parameter should do above the transi-
tion.

The origin of the problem with the diagonalization pro-
cedure, here as in PBMC, lies in the fact that it always deter-
mines a direction of maximum ordering for every configura-
tion and yields (P,) with respect to this instantaneous
director even in the isotropic phase, where we do not have a
bona-fide director. It follows that (P,), being the average of
the nonnegative quantity 4, is overestimated by the diagona-
lization algorithm in the isotropic phase. A recent interest-
ing proposal'® of taking the second, instead than the largest
eigenvalue of Q to estimate the order parameter in the iso-
tropic phase does not seem to completely solve the problem.
On one hand it is clear that the second eigenvalue corre-
sponds to a direction perpendicular to the instantaneous di-
rector and that averaging it will give a number approaching
zero. It is thus also true that the value obtained in this way
for the finite system is a better approximation to the infinite
value. On the other hand, the conceptual problem remains
since the director does not exist in the disordered phase and
cannot be identified with the instantaneous direction of max-
imum alignment. Indeed the diagonalization procedure
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FIG. 6. The second rank order parameter referred to the instantaneous di-
rector (P,),; for 5X5X5 (A) and 10X 10X 10 (B) lattices.

would give an order parameter different from zero for any
finite isotropic system.

We see from Fig. 7 that the order parameter with respect
to the director and that relative to the laboratory are strictly
related to one another in the nematic phase. It is interesting
to examine the relation between the two? even at the cost of
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U.U 1 1 i 1 i i j]
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FIG. 7. The relation between the second rank order parameter referred to
the average director {P,) and its counterpart (P,), referred to the fluctuat-
ing preferred orientation. :
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making some simplifying assumptions. Writing the rotation
from the laboratory to the molecular frame in two steps gives

(D3(M —L))iap = 3 (D%(D — L)*D%(M — D))
" (26)

where we use the notation D, (B — A } for the Wigner rota-
tion matrix connecting frame 4 to frame B. If we assume that
director fluctuations can be decoupled so that they can be
averaged separately and if uniaxial symmetry exists, then

<P2) = <P2>ﬂuc <P2>,1: (27)
where (P,),,. indicates the dispersion of the director. No-
tice that we have no a priori warranty that performing the
decoupling in Eq. (27) is fully justified, even though it is com-
monly used* because of the different time scales of the direc-
tor and molecular motion. Equation (27) is important in view
of a problem recently taken up by Warner.>? The problem is
to assess what part of the laboratory order parameter that is
normally measured is to be ascribed to director fluctu-
ations®> and what part is the bare order parameter referred to
the director. One extreme case is that all the disorder is due
to reorientational motion, thus with {P,),,. ~1.3* The other
approach is of a continuum type and at its extreme assumes
(P,), ~1 thus considering that disordering is essentially a
coherent director fluctuation process.>® Our results here in-
dicate an intermediate situation with a (P,)g,. correspond-
ing roughly to amplitudes of director fluctuations increasing
from about 3 degat T* = 0.90 to about 30 deg just before the
transition. An elastic analysis*?>~ gives

(P =1— 2 kT*/(KL,), (28)
T

~ whereKisan average elastic constant and L, a cut off length.

Transforming to dimensionless units for the LL model,
K*=Ka/e, L¥ = L_/a we find

3

K*L*=""T*/(1 — (P)gu.)- (29)
T

It is well known that elastic constants are expected to vary as
the square of the order parameter®”: K = K (P,)>. If this is
the case and if we can assume that the cutoff length does not
vary with temperature in this range than X *L ¥ should be
linear in {P,)2. In Fig. 8 we show that this is the case to a
good approximation. We find for the 10X 10X 10 system

K*L*=B(P,)?

with B = 315 4+ 7 and correlation coefficient » = 0.943. An ~

order of magnitude estimate of the quantities involved for a
real nematogen (MBBA),*" ie., K;=~2X107° dyn, Ty,
~320 K, would give L, ~~60 nm. This is an admittedly ap-
proximate calculation, but is possibly the first estimate of the
cutoff length determining the purely microscopic and fluctu-
ation contributions to the order parameter.>’ The CMC
method seems suitable for studying elastic properties of ne-
matogen models even though this should be further investi-
gated.

C. Pair propérties

We have calculated the angular pair correlation coeffi-
cients G, (r)® for rank L = 2 and 4. We recall that
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FIG. 8. The product of reduced average elastic constant K * and cutoff
length L ¥, as obtained from Eqs. (28) and (29), plotted against the order
parameter {P,}, for the 10X 10 10 lattice. The best linear regression go-
ing through the origin is shown as the continuous line.

G (r)= (PL(COSBij)>r (30)
gives the correlation between the orientation w,, of two par-

ticles separated by a distance 7. They represent expansion
coefficients of the rotationally invariant pair distribution
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FIG. 9. The angular pair correlation coefficients G, (r) = (P,(cos B;,)) with
[;. relative orientation of two particles at distance r presented for rank
L =2(A)and L = 4(B). Here we show the result for the 5 X 5% 5 lattice and
for three reduced temperatures: 0.90 (), 1.04 (O)and 1.15 (X ). Dimension-
less distances from the nearest neighbor one to the box length are shown.
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G (ripwp,) = G(o)o(rlz)z [2L + 1)/6477'4_]

. XGL{r)P(cos Bio), (31
where

Glrs) = fdwl dar,G (ryp01). (32)

The pair coefficients G, (r) should start from one and tail off
to essentially (P, )3 .® In PBMC, however every distance de-
pendent property is determined modulo the box length.
Thus the pair coefficients grow up unphysically for particles
whose distance approaches the box length. In the present
method this is not the case and the pair correlation has the
correct asymptotic behavior. In Figs. 9(A) and 9(B) we
show as an example G,(r) and G, (r) for these temperatures
in the 53X 5 X § system and for interparticle separations up to
the box length.

V. DISCUSSION AND CONCLUSIONS

In the procedure described we build a ghost environ-
ment outside our “small” MC sample that mimicks the true

one and its fluctuations by obeying at least approximately
Eq. (11). Notice that in an ordinary MC calculation with
periodic boundary conditions Eq. (11) is replaced by the
much stronger condition that in the various sample replicas
the state variables X, (e.g., orientations) and not just their
distribution are the same.

The method proves effective at least for the present sys-
tem: it gives results on a system of only 125 particles which
are comparable to those obtained with much larger samples.
Thus quick exploratory studies of small systems could be
performed. The procedure allows defining a laboratory
frame with the average director identified as the symmetry
breaking direction. This allows calculation of order param-

* eters with respect to this external direction, pretty much the

same way as it is done in experimental work. Order param-
eters with respect to the instantaneous director can of course
be calculated as usual. A detailed comparison of the two can
give information on director fluctuations and thus elastic
constants.
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TABLE Al. A summary of the results obtained with the CMC method on a 5X 5X 5 Lebwohl-Lasher model for energy U *, heat capacity C ¥ and order

parameters (P,), (P,),, and (P,). Here N, is the number of production cycles.

T U+ (P,); (P) (P) Cct N, /10°
0.900 —2.173 + 0.008 0.727 + 0.0019 0.715 + 0.0020 0.3701 + 0.0031 2.8+0.10 27
0.930 —2.095 + 0.008 0.710 + 0.0019 0.698 + 0.0018 0.3465 + 0.0025 24 +0.20 31
0.950 — 2.054 + 0.006 0.700 + 0.0013 0.688 + 0.0016 0.3352 + 0.0020 2.3+ 0.20 36
0.970 — 1.999 + 0.009 0.687 + 0.0024 0.674 + 0.0027 0.3184 + 0.0033 3.4 +0.10 25
0.990 — 1.925 + 0.011 0.669 + 0.0040 0.656 + 0.0045 0.3001 + 0.0051 3.8 +0.30 24
1.000 — 1.895 + 0.005 0.660 + 0.0016 0.647 + 0.0019 0.2901 + 0.0021 41+020 32
1.010 — 1.842 + 0,016 0.645 + 0.0045 0.630 + 0.0046 0.2746 + 0.0045 4.6+0.30 24
1.020 ~ 1.794 + 0.011 0.633 + 0.0025 0.617 + 0.0032 0.2614 + 0.0026 454030 31
1.030 — 1.759 + 0.013 0.624 + 0.0041 0.608 + 0.0047 0.2528 + 0.0044 4.4+ 040 24
1.040 — 1.714 + 0.009 0.612 + 0.0026 0.596 + 0.0026 0.2436 + 0.0027 4.5+ 0.50 36
1.050 —~ 1.669 + 0.011 0.597 + 0.0033 0.580 + 0.0038 0.2299 + 0.0031 4.5+ 0.50 54
1.055 — 1.650 + 0.012 0.594 + 0.0038 0.578 + 0.0041 0.2271 + 0.0035 3.5 +0.60 29
1.060 — 1.636 + 0.012 0.590 + 0.0036 0.574 + 0.0039 0.2243 + 0.0032 434030 44
1.065 — 1.606 + 0.024 0.582 + 0.0070 0.564 + 0.0080 0.219 + 0.0061 54 + 040 19
1.070 — 1.580 + 0.017 0.573 + 0.0055 0.556 + 0.0058 0.2093 + 0.0041 424030 35
1.080 — 1.550 + 0.018 0.563 + 0.0057 0.546 + 0.0062 0.2033 + 0.0048 4.0 +0.40 36
1.090 — 1.482 4+ 0.013 0.541 + 0.0047 0.523 + 0.0048 0.1868 + 0.0033 4.5+0.50 38
1.100 — 1.440 + 0.013 0.527 + 0.0045 0.508 + 0.0046 0.176 + 0.0033 6.8 + 1.00 29
1.110 — 1.391 + 0.009 0.510 + 0.0034 0.488 + 0.0039 0.1642 + 0.0023 7.2+ 1.50 35
1115 —1.331 + 0.020 0.482 + 0.0087 0.460 + 0.0093 0.1472 + 0.0045 3.2 + 1.40 34
1.120 —1.321 + 0.013 0.481 + 0.0054 0.459 + 0.0062 0.1461 + 0.0032 2.9+ 1.00 39
1.125 — 1.306 + 0.009 0.477 + 0.0038 0.456 + 0.0042 0.1438 + 0.0026 3.0+ 1.50 42
1.130 —1.246 + 0.013 0.452 + 0.0054 0.425 + 0.0062 0.1297 + 0.0031 18.3 4+ 2.00 60
1.135 —0.996 + 0.031 0.308 + 0.0189 0.224 + 0.0275 0.0734 + 0.0070 18.1 +2.00 84
1.140 — 1.048 + 0.011 0.358 + 0.0060 0.325 + 0.0068 0.0843 + 0.0025. 15.4 4+ 1.50 82
1.145 — 1.072 4+ 0.008 0.375 + 0.0043 0.346 + 0.0045 0.0902 + 0.0021 152 4+ 1.50 50
1.150 —0.878 + 0.024 0.244 + 0.0154 0.132 4+ 0.0238 0.0488 + 0.0054 152 + 1.50. 80
1.155 —0.838 + 0.018 0.227 + 0.0120 0.129 4+ 0.0199 0.0406 + 0.0036 10.8 +0.80 59
1.160 —0.761 + 0.003 0.168 + 0.0017 0.011 + 0.0041 0.0228 + 0.0005 54 +0.50 51
1.170 — 0.747 + 0.003 0.166 + 0.0014 0.009 + 0.0038 0.0221 + 0.0005 1.9+ 0.30 39
1.180 - — 0.744 + 0.003 0.165 + 0.0018 0.009 + 0.0042 0.0215 + 0.0008 0.9 4+ 0.20 24
1.200 — 0.727 + 0.804 0.160 + 0.0020 0.024 + 0.0033 0.0208 + 0.0004 1.0+ 0.20 30
1.220 —0.707 + 0.004 0.156 + 0.0018 0.006 + 0.0038 0.0201 + 0.0005 0.9 +0.10 22
1.250 — 0.681 + 0.004 0.147 + 0.0017 .000 + 0.0035 0.0181 + 0.004 0.9 +0.10 18
1.270 —0.661 + 0.007 0.145 + 0.0026 0.011 + 0.0047 0.0168 + 0.0011 0.9+0.10 10
1.300 — 0.655 + 0.006 0.141 + 0.0021 0.0159 -+ 0.0008 0+0.10 13

0.013 + 0.0029
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TABLE A2. A summary of the results obtained with the CMC method on a 10X 10 X 10 Lebwohi—Lasher model for energy U *, heat capacity C %, and order

parameters {P,), {P,),, and (P,). Here N, is the number of production cycles.

T* U* (Py), (P,) (P,) c3 N./10°
0.900 —2.005 1+ 0.001 0.710 4+ 0.001 0.706 4 0.001 0.3353 4 0.0014 25401 27
0.950 — 1.879 4+ 0.002 0.677 + 0.001 0.673 4 0.001 0.2945 4+ 0.0010. 264+03 32
0.970 — 1.826 4 0.002 0.662 + 0.001 0.658 +- 0.001 0.2793 4 0.0011 27402 24
0.990 — 1.768 4+ 0.004 0.645 + 0.001 0.639 + 0.002 0.2577 + 0.0019 34402 12
1.000 - 1.733 4+ 0.002 0.635 £+ 0.000 0.630 4+ 0.001 0.2490 4 0.0007 35401 27
1.020 — 1.662 + 0.003 0.614 +- 0.002 0.609 + 0.002 0.2293 4+ 0.0019 35402 25
1.030 — 1.627 1 0.002 0.602 4 0.001 0.597 + 0.001 0.2185 4- 0.0012 34402 22
1.040 — 1.596 4+ 0.003 0.592 4+ 0.001 0.587 4+ 0.001 0.2100 + 0.0009 34402 12
1.050 — 1.556 + 0.004 0.579 + 0.002 0.574 4 0.002 0.1999 4+ 0.0016 41402 19
1.060 — 1.512 4 0.004 0.564 + 0.002 0.558 4 0.002 0.1864 1 0.0018 494038 14
1.070 — 1.461 + 0.004 0.545 4 0.002 0.538 4- 0.002 0.1719 4 0.0020 6.8 +038 12
1.080 — 1.363 4+ 0.019 0.529 + 0.004 0.523 4+ 0.004 0.1620 4 0.0025 69409 26
1.090 — 1.315 4+ 0.020 0.504 4- 0.004 0.498 + 0.004 0.1456 + 0.0025 6.9+09 22
1.100 —1.256 +0.021 0.477 4 0.005 0.469 + 0.005 0.1298 + 0.0027 5.5+ 1.0 28’
1.110 —1.220 £ 0.010 0.447 4 0.005 0.439 4+ 0.005 0.1109 4+ 0.0026 52415 33
1.120 — 1.154 4+ 0.007 0.418 + 0.003 0.410 4 0.003 0.0959 4+ 0.0014 7.6+ 1.0 78
1121 — 1.136 £ 0.006 0.403 4- 0.003 0.395 4 0.003 0.0890 4 0.0016 99+ 1.0 35
1.123 — 1,133 4+ 0.006 0.401 + 0.004 0.393 4- 0.004 0.0877 4 0.0021 13.74 1.4 32
1.125 — 1.086 + 0.012 0.384 4+ 0.007 0.375 4+ 0.007 0.0813 + 0.0028 218 + 1.7 52
1.130 —0.862 1 0.016 0.170 4- 0.016 0.116 4 0.021 0.0169 + 0.0042 219+ 1.8 70
1.135 —0.900 + 0.016 0.225 +-0.016 0.194 4- 0.020 0.0299 + 0.0040 2134+ 1.7 62
1.140 —0.779 + 0.002 0.094 + 0.002 0.026 + 0.006 0.0007 + 0.0004 5.1£1.0 47
1.145 —0.776 + 0.003 0.097 + 0.002 0.030 4- 0.006 0.0009 4 0.0004 1.9+0.5 48
1.150 —0.767 4+ 0.002 0.090 + 0.002 0.020 4- 0.005 0.0004 + 0.0004 1.2+02 55
1.160 —0.757 + 0.002 0.085 4+ 0.003 0.019 4 0.005 0.0006 + 0.0004 1.34+02 36
1.200 —0.694 4+ 0.007 0.073 4+ 0.001 0.010 +0.003 0.0001 + 0.0003 1.3+02 31
1.300 —0.625 + 0.002 0.060 4+ 0.001 0.000 + 0.001 — 0.0002 4 0.0002 02+0.2 25

system used in this work. I am grateful to Professor G. R.
Luckhurst for the interest shown in this work and to NATO
for a travel grant.

APPENDIX

Here we give a detailed tabulation of the simulation re-
sults for the small 5X 5 X 5 system (see Table A1) and for the
10X 10X 10 lattice (see Table A2). The average values and
the errors quoted have been obtained as follows. Every ob-
servable of interest A is calculated with the appropriate algo-
rithm as discussed in Secs. Il and IV and is sampled at every

.cycle. After a certain number of cycles m; (typically 1000 to

2000) an average A ’is calculated, thus coarse graining the
trajectory. A further grand average over M such segments
are then calculated as the weighted average
M
(A)=(1/NC)Z m,A”, (A1)
J
where No = Z¥_ | m, is the total number of production cy-
cles. These averages are reported in Tables A1 and A2. The
attendant standard deviation o ,,
M

=13

gives the error estimates reported for order parameters and
energy in Tables A1 and A2. The heat capacity is obtained as
described in Sec. III by smoothing spline fitting the energy,
followed by numerical differentiation, so that standard error
estimates are more difficult to obtain. The errors quoted here

m,[AJ—(A)]z/[(M—l)NC]]V, (A2)

are representative of the spread in the C* values obtained
when changing the interpolation and smoothing parameters.
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