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We perform large-scale Monte Carlo simulations of orientational ordering in nematic shells and
study the type and position of topological defects when an external electric field (homogeneous or
quadrupolar) is applied. The field-induced variation of the defect number (and strength) can be
used to change the valence of colloidal particles coated with a nematic layer.

PACS numbers: 61.30.Cz, 61.30.Gd, 61.30.Jf

In a seminal paper of only a few years ago, Nelson [1]
suggested the fascinating possibility of doing chemistry
using colloidal particles coated with a layer of liquid crys-
tals, rather than atoms. Theoretically, upon covering a
micro-size sphere with a thin layer of nematic liquid crys-
tal — characterized by a quadrupolar symmetry order
parameter — four half-strength topological defects [2] are
predicted, consistently with the Poincaré constraint that
the total surface defect charge should in this case equal
2 [1, 3]. These defects, placed at the vertices of a regular
tetrahedron, represent high-free energy spots, potentially
suitable for a chemical attack, so as to build complex col-
loidal architectures [4, 5], e.g., for photonic applications.
Various alternative strategies for decorating nanoparti-
cles have recently been proposed, e.g., via nanoemboss-
ing by metal vapor deposition on colloidal crystals [6], by
grafting binary polymer brushes [7], and via micro and
nanosize spherical particle binary dispersions in oil-in-
water emulsion droplets [8]. However, colloidal defects
creation seems to be a particularly elegant and poten-
tially powerful method. Experimentally, the first such
systems — nematic layer-covered microdroplets — have
been prepared using microfluidic techniques [9, 10]. Al-
ternatively, tetrahedral defect configurations have been
predicted for the nematic wetting layers surrounding a
spherical particle with planar anchoring [12]. It might
then become possible to create three-dimensional archi-
tectures where high-free energy defect cores are used as
attachment points for complex linkers such as deoxyri-
bonucleic acid or polymer linkers [1, 11]. In this per-
spective it seems very important to have the possibility
of controlling the coordination number and the valence
angles of the “colloidal atoms” by changing the number
of surface defects and/or their position on the spherical
particle. For nematic shells it has been predicted that
two rather than four surface defects should be obtained
in the case of a polar nematic [1], but this does not seem
a viable route towards inducing a valence change, as po-
lar fluid liquid crystals have not been found as yet. Here
we are exploring the possibility, that should be accessible
to experiment, of controlling the defect locations by ap-
plying an external (e.g., electric) field, either uniform or

with a specific multipolar character. Our study is based
on lattice Monte Carlo (MC) simulations, instead of ap-
plying purely theoretical arguments, because on one hand
we can show — where comparison is possible — that the
two treatments give the same results while, at the same
time, the simulation approach offers a greater flexibility
for the variety of cases we wish to consider.

We have performed large-scale MC simulations of
liquid-crystalline ordering in spherical nematic shells,
based on the Lebwohl-Lasher (LL) lattice model [13] con-
sisting of a system of N rotors/particles ui (unit vectors
representing close-packed clusters of ∼ 102 nematogenic
molecules) positioned at the nodes of a simple cubic lat-
tice with spacing a. The LL Hamiltonian is given by
Hn = −

∑
〈ij〉 εijP2(ui · uj), where the sum runs over

nearest neighbors ui and uj only, εij is a constant, and
P2(x) = (3x2 − 1)/2. In the bulk one has εij = ε > 0.
Then Hn favors parallel alignment of nearest-neighbor
particles, compatibly with the imposed boundary condi-
tions. It has already been demonstrated that LL simula-
tions can be used to study topological defects in thin
liquid crystal films [14]. Here, however, our sample
was comprised between two concentric spheres carved
from the cubic lattice, with the inner and outer sphere
radii set to 30a and 40a, respectively, yielding a total of
N = 148968 shell particles. Tangential (planar degener-
ate) boundary conditions at both surfaces were imposed
by an additional layer of “ghost” particles, fixed along
the radial direction from the common sphere center, with
εij = −ε < 0 for the ghost-nematic interaction. (This
corresponds to strong planar anchoring.) Finally, the
aligning effect of the external electric field was modeled
by Hf = −εη

∑N
i=1 F 2

i P2(ui · fi), where η is a field cou-
pling term proportional also to the dielectric anisotropy
εa. For εa > 0 particle long axes ui are aligned along
the local field Fi = Fifi, where fi is a unit vector and
Fi = |Fi|. Hence, in an inhomogeneous field the align-
ment coupling strength is spatially-dependent and is lo-
cally given by εηF 2

i .
Our MC runs were performed for T ∗ = kBT/ε = 1.0,

i.e., well below the bulk nematic-isotropic transition tem-
perature T ∗

NI ≈ 1.1232 [15], increasing and decreasing

to be published, PRL (May 2008)



2

(a) (b) (d)

(c) (e)

z

z

FIG. 1: (color online) Nematic shell: director field and defect positions in absence of external field (a), and in a homogeneous
field directed along z, with η = 0.03 (b,c) and η = 0.06 (d,e). View perpendicular to z (b,d) and along z (c,e). The defects are
indicated by red color, the director field by streamlines. The dark sphere represents the inner shell surface; the outer shell is
not shown.

the external field strength. Trial moves — attempted
particle rotations [16], in a random sequence [15] —
were accepted/rejected following the Metropolis algo-
rithm [17], while maintaining the acceptance ratio close
to 50%. Each run was started from the configura-
tion equilibrated at the nearest lower/higher value of
η; then 280 MC kcycles (a cycle equals N attempted
MC moves) were performed for equilibration, followed
by 20 MC kcycles for production. To visualize nematic
director fields, we followed Callan-Jones et al. [18], cal-
culating the average components of the local ordering
matrix Ui = 〈ui ⊗ ui〉 for each lattice site. (Here 〈· · · 〉
denotes an average over MC cycles.) Then, Ui was di-
agonalized, yielding the eigenvalues λi

1 ≥ λi
2 ≥ λi

3, as
well as the corresponding eigenvectors. The local direc-
tor was identified as the eigenvector corresponding to
λi

1. The nature of nematic ordering can be presented
in terms of the three Westin metrics: ci

l = λi
1 − λi

2,
ci
p = 2(λi

2 − λi
3), and ci

s = 3λi
3 [18]. Then, ci

l ≈ 1 is
a signature of a well-ordered uniaxial nematic, ci

p ≈ 1
corresponds to pronounced planar ordering, and ci

s ≈ 1
to isotropy (no ordering). Topological defects are charac-
terized by absence of pronounced uniaxial ordering and
can therefore be identified as regions where cl drops be-
low a certain threshold. As in [18] we here used ci

l < 0.12,
unless noted otherwise. The defect strength — surface
topological charge — is determined from the calculated
director fields by monitoring the director rotation along
a closed loop enclosing the defect on the inner/outer shell
surface [19, 20].

Turning now to the results, we observe first, in the
absence of an external electric field, a director configu-
ration with four defect lines penetrating the shell, with
a strength s = 1/2, as predicted for one elastic con-
stant curvature elasticity in Ref. [1]. (Note that using
the LL model actually corresponds to working in the

one-constant approximation.) The corresponding direc-
tor field is shown in Fig. 1 (a). The repulsion between
defect lines maximizes the line-to-line distance, therefore
the lines are located approximately at the vertices of a
tetrahedron, its orientation in space being degenerate.
We have observed that this changes once the inner and
outer spheres are not concentric anymore, as, e.g., due
to effects of gravity in a real experiment: our simulations
show that the defect lines then move towards the thin-
ner part of the shell to reduce their length, which agrees
with the observations of Ref. [10]. The diameter of the
defect line core is estimated as 6a approximately, which
is compatible with the estimate for the nematic correla-
tion length in the LL model. If the average production
period is extended too much, the image of the defects is
smeared out since they fluctuate around their equilibrium
positions, as suggested in Ref. [1].

It has been predicted that the four-defect line tetra-
hedral configuration is stable only in rather thin shells.
Instead, in thick shells a bipolar configuration should be
observed, where the disclination lines are replaced by a
three-dimensional escaped structure with surface point

(a) (b)
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FIG. 2: (color online) Same as Fig. 1, however for a
axially-symmetric quadrupolar F 0

i -type external field (de-
picted schematically as inset) for η = 0.045 (a) and η =
0.18 (b). The field symmetry axis is parallel to z, the cl

threshold equals 0.24.
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FIG. 3: (color online) Same as Fig. 2, however for a quadrupolar F 2
i -type field, as seen from three mutually perpendicular

directions. Field cross section normal to z and z-axis orientations are shown schematically as insets; η = 0.015 (a-c), η = 0.03 (d-
f), and η = 0.05 (g-i).

defects at the shell surface poles [9, 21]. Therefore, we
have also performed some simulation runs varying the
inner sphere radius, and the four-defect line configura-
tion turns out to be stable for radii above ∼ 12a. The
three-defect line configurations seen experimentally [10]
have not been observed so far. — Moreover, we have per-
formed some testing runs with a Heisenberg model-like
P1-type (polar) inter-particle potential in a shell, observ-
ing a pair of s = 1 defects at the shell poles [1].

Let us now consider a nematic shell exposed to a ho-
mogeneous external electric field along the z-axis, taking
Fi = (0, 0, 1). In the following we assume, for simplic-
ity, that the dielectric anisotropy of the nematic is not
extremely large so that the local direction and strength
of the external field are not affected by the local order-
ing of the nematic material. (In the opposite case a
self-consistent solution of Maxwell equations would be
necessary during the MC evolution.) Then, in a typi-
cal nematic η = 0.1 corresponds to a field strength of
∼ 30 V/µm [22]. The gradual evolution of the defect line
position on the sphere can be deduced from Fig. 1 (b-e):
on increasing the field strength, first the defect line tetra-
hedron deforms and aligns as required by the field, and
finally the four s = 1/2 defect lines penetrating the shell

partially coalesce to form two pairs of s = 1 surface point
defects at the inner/outer sphere poles [Fig. 1 (d,e)]. Here
the bipolar axis is parallel to the field direction. Note
that such escaped surface defects will typically be seen in
a strong field wherever the field is directed along the local
shell normal, thus being in conflict with surface boundary
conditions. — At this point we have succeeded in chang-
ing the colloidal valence from 4 to 2. During this process
the surface topological defect charge remained constant
and equal 2.

In order to further manipulate defects on a nematic
shell, one can also use an inhomogeneous external field.
In fact, inhomogeneous electric fields with multipolar
character have already been implemented experimentally,
e.g., in a spherical electrical charge-free area surrounded
by electrodes [23]. In such a device, the first higher-
order (i.e., quadrupolar) solution of the Poisson equa-
tion for the electrostatic potential can be written as
φ(r) =

∑2
m=−2 cmr · Qmr [24], where the Cartesian co-

ordinates r are measured from the sphere center, cm are
constants and Qm is the second-rank tensorial base given
by Q0 = (3ez ⊗ez − I)/

√
6, Q1 = (ex⊗ez +ez ⊗ex)/

√
2,

Q−1 = (ey⊗ez+ez⊗ey)/
√

2, Q2 = (ex⊗ex−ey⊗ey)/
√

2,
and Q−2 = (ex ⊗ ey + ey ⊗ ex)/

√
2. (Above ex, ey,
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and ez denote the orthonormal Cartesian triad, and I
the identity matrix.) Then, the resulting electric field
equals E(r) = −∇φ(r) = −2

∑2
m=−2 cmQmr. Like for

the homogeneous case, we have studied nematic order-
ing in a shell exposed to the five independent quadrupo-
lar field components Em(r) = −2cmQmr. For the ith
lattice site at ri = (xi, yi, zi) the corresponding local
field vectors Fm

i ∝ Em(ri) used in Hf become: F0
i =√

2/3(xi, yi,−2zi)/a, F1
i = −

√
2(zi, 0, xi)/a, F−1

i =
−
√

2(0, zi, yi)/a, F2
i =

√
2(−xi, yi, 0)/a, and F−2

i =
−
√

2(yi, xi, 0)/a.
Let us first focus on the axially symmetric F0

i -type field
enjoying D∞h symmetry. At intermediate field strengths
F0

i produces patterns similar to those seen for the bipolar
shell in the homogeneous field, with two pairs of s = 1
surface defects at the poles; see Fig. 2 (a). In a strong
field, Fig. 2 (b), the pole surface defects are accompa-
nied by equatorial defect rings at both inner and outer
shell surfaces. Contrary to the pole defects (being a con-
sequence of topological constraints) the rings will disap-
pear once the field is switched off. Note that the surface
topological charge contribution of each ring is equal to
zero and that the pole defects alone account for the total
charge that is conserved. — As an example of a field with
no axial symmetry consider the F2

i -type field character-
ized by D2h symmetry. The defect evolution and the cor-
responding director fields are shown in Fig. 3. Increasing
η, at first the zero-field four-defect line structure is main-
tained; the defect line positions merely adapt, as required
by the field. Then, above a threshold at η ≈ 0.04, a more
complex configuration is observed: the four s = 1/2 de-
fect lines, valence 4, transform into four s = −1/2 de-
fect lines still penetrating the shell, accompanied by four
s = 1 surface defect pairs, yielding a valence of 8. Note
that thanks to defects with negative topological charge
that have been introduced in the shell, the overall topo-
logical surface defect charge is still conserved. — The
structures for other Fm

i , m 6= 0, are similar to those re-
ported in Fig. 3, yet oriented in a different way. Linear
combinations of Fm

i and higher order multipoles result
in even more complicated and in a way interesting de-
fect patterns. — Notice that in the inhomogeneous field
case we have assumed that the nematic shell center coin-
cides with the coordinate system origin. Experimentally,
the colloidal particle could be brought in the correct posi-
tion, e.g., by means of a laser tweezer. Then, after having
applied the multipolar field with the desired symmetry,
the defect configuration should be suitably stabilized to
persist even after the field is turned off.

Concluding, we have shown, using large-scale Monte
Carlo simulations, that defect number, strength, and po-
sition on a spherical shell can be manipulated by ex-
ternal homogeneous or inhomogeneous fields. In par-
ticular, a homogeneous field induces a structural tran-
sition from a four half-strength defect line structure to

a bipolar structure with two pairs of surface defects on
the inner/outer shell poles. Higher-order multipole fields
can result in more complicated defect patterns, includ-
ing negative-strength defect lines. In all cases, however,
the total surface defect charge is conserved, as required
by the topological constraints. From the point of view of
building colloidal assemblies the problem of consolidating
the defect structures should clearly be solved. One possi-
bility could be that of performing the ligand attack before
switching off the field or of using a polymerization (e.g.,
photo-initiated) while the multipolar field is acting on
the colloidal suspension. Even though this may clearly
be challenging from the experimental point of view we
believe the possibilities opened by the techniques theo-
retically demonstrated here are numerous and promising.
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