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Abstract

We propose a simple coarse-grained lattice model for liquid crystal elastomers and
show, through large scale Monte Carlo simulations, that it can reproduce stress-
strain, order, light transmission, and other experiments, including temperature ef-
fects. We focus both on homogeneously and inhomogeneously crosslinked materials.

Key words: liquid crystal elastomers, lattice models, Monte Carlo simulations
PACS: 61.30.Vx, 61.30.Cz, 61.41.+e

Liquid crystal elastomers (LCE) are fascinating materials, obtained by par-
tially crosslinking chains of polymeric liquid crystals, that combine elastic
properties of conventional rubbers with anisotropic properties of liquid crys-
tals [1]. Because of the pronounced coupling between strain and alignment of
mesogenic units, and the responsiveness to external stimuli such as tempera-
ture, electric and magnetic fields, or, in certain cases, UV light, LCE materials
promise to be suitable for the construction of actuators and detectors, and for
various applications, ranging from micro-pumps to artificial muscles [1,2]. On
the fundamental side, irregular crosslinks and chemical heterogeneity in a LCE
network provide a source of quenched random disorder similar to that observed
in nematics with sprinkled silica nanoparticles [3–5], or in spin glasses with
magnetic impurities [6] or random anisotropy [7]. Consequently, LCE, too,
are characterized by a complex free energy landscape leading to glassy or-
dering. While, e.g., in spin glass systems quenched disorder can be overcome
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by a strong enough magnetic field, in LCE this can be achieved mechani-
cally by stretching the sample [8]. Theoretically, LCE have been described,
at continuum level, by the “neo-classical” theory based on anisotropic rub-
ber elasticity [1], by Ginzburg-Landau approaches [9–11], as well as by 2D
modeling [12]. It would, however, be very important to dispose of 3D micro-
scopic models trying to catch the essential aspects of these complex systems
and establish their microscopic roots. Here we develop a stretchable coarse-
grained lattice model for LCE [13] by suitably generalizing similar models
developed for liquid crystals [14,15]. The model is compared with experiment
— polarized light transmission and deuterium nuclear magnetic resonance
(2H NMR) — carrying out constant-force Monte Carlo (MC) simulations of
stretching experiments and temperature scans, both for homogeneously and
inhomogeneously crosslinked (glassy) samples. Another lattice model has been
presented recently [16] to explain the smoothness of the nematic-isotropic (NI)
transition [11] in LCE. Also recently, stretching MC simulations of semiflexible
polymer chain networks have been presented [17].
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Fig. 1. Coarse-grained LCE model: undeformed (left) and stretched (right) unit cell
(2D projection).

The main building blocks of our model are (i) rubber elasticity of polymer
networks, (ii) anisotropic interactions between nematogenic units (van der
Waals-type, or steric), and (iii) the strain-alignment coupling. (i) In the model,
we assume the spatial distribution of crosslinks to be uniform (on average).
The crosslinks are hence taken to coincide with lattice points of a 3D vir-
tual “elastic” lattice (assumed simple cubic if undeformed, with spacing a), as
sketched in Fig. 1. The neighboring crosslinks are connected by ideally flex-
ible polymer chains that typically contain ∼ M monomers of length b each.
We neglect chain entanglements and crosslink fluctuations, and work in the
phantom chain limit [1]. Then, the distribution of chain end-to-end vectors is
Gaussian and is isotropic as long as the sample is at rest but, upon stretching,
polymer chain trajectories deform (assumed affinely and at constant volume)
together with the sample. This decreases the chain conformation entropy thus
giving a positive elastic free energy contribution. From the Gaussian end-to-
end distribution, the probability of observing a unit cell deformed uniaxially
by λ (the extension factor, see Fig. 1) is proportional to exp[−α(λ2 + 2/λ)],
with α = 3a2/2Mb2. In MC simulations, the same probability distribution in λ
space is generated by the Metropolis algorithm [18] if a temperature-dependent
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pseudo-Hamiltonian is introduced to mimic this entropic effect; see Ref. [19]
and references therein. For uniform stretching (considered in the following) it
is given by

He = NkBTα
(

λ2 +
2

λ

)

, (1)

where N is the number of lattice sites. Assuming monomers to be almost close-
packed (a3 ∝ Mb3), α scales as M−1/3: short chains (and a higher crosslink
density) yield a larger α and a higher elastic modulus. — (ii) A unit vector
ui representing the average orientation of mesogenic units (that needs not
coincide with the polymer chain average direction) is placed in the center
(Fig. 1) of each cell of the elastic lattice. Close-packed mesogenic clusters of
the neighboring cells i and j (containing ∼ M units each) interact via

Hu = −
∑

〈i<j〉

ǫijP2(ui · uj) (2)

(assuming periodic boundary conditions), where P2(x) ≡ 1

2
(3x2 − 1), and ǫij

are the nearest neighbor cell-cell interaction strengths. Their characteristic
magnitude ǫ defines a reduced temperature scale T ∗ = kBT/|ǫ| and we as-
sume that the sign of ǫij can vary according to polymer features. Thus, if
the elastomer was crosslinked with mesogenic units aligned (i.e., in the ne-
matic phase or under stress), we expect the system to relax to an aligned
state. Choosing ǫij = ǫ > 0 (< 0), Hu promotes parallel (perpendicular)
alignment of ui and is for ǫ > 0 equivalent to the Lebwohl-Lasher (LL) lat-
tice model used for nematics [14,15]. If, on the other hand, mesogenic units
were not aligned prior to crosslinking, the relative equilibrium orientation of
neighboring ui and uj is not necessarily parallel anymore. Irregularities that
can emerge due to polymer chain disorder, enhanced by local chemical het-
erogeneities, can be mimicked by sampling ǫij from a given distribution. The
simultaneous presence of positive and negative ǫij in the system (favoring par-
allel and perpendicular ui alignment, respectively) creates a highly frustrated
lattice system analogous, e.g., to a Heisenberg spin glass [6]. — (iii) Finally,
the coupling between elastic strain and mesogenic alignment is modeled in
terms of an effective mechanical field, again of entropic origin, directed along
the major principal axis of strain. Then, if the sample is stretched by λ along
the z-axis, the corresponding pseudo-Hamiltonian is assumed to be

Hm = −kBTχQ(λ)
N

∑

i=1

P2(ui · z), (3)

where χ is a coupling constant and the deformation-dependent strength Q(λ)
is a second-rank order parameter associated with the net alignment of poly-
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mer chains along z. (Here z denotes a unit vector parallel to the z-axis.)
Note that Hm is formally similar to the Maier-Saupe Hamiltonian in ne-
matics, where the effective strength of the local aligning field on a given
molecule is proportional to the order parameter of the surrounding nematic
material [20,21]. Here, however, Q(λ) measures the anisotropy of the poly-
mer chain end-to-end tensor distribution, represented by a uniaxial ellipsoid
E obtained from an isovolume deformation of a unit sphere by a factor of
λ along the z-axis. Denoting with θ the polar angle measured with respect
to z, and with Ω the corresponding solid angle, the integration over E gives
Q(λ) = (4π)−1

∫

E P2(cos θ)dΩ = (3λ3/2)L(λ3 − 1) − 1/2, where

L(ζ) =



























(

arctanh
√
−ζ −

√
−ζ

)

/
√
−ζ3, −1 < ζ < 0,

1/3, ζ = 0,
(√

ζ − arctan
√

ζ
)

/
√

ζ3, ζ > 0;

(4)

see Fig. 2, inset. In an undistorted sample (λ = 1) the mechanical field is ab-
sent and Q(1) = 0. On stretching (λ > 1) one has Q(λ) > 0, hence for χ > 0
mesogenic units align along the stretch axis, while for χ < 0 the alignment
is perpendicular to it (vice versa when compressing). Q(λ) is monotonically
increasing for all λ > 0, with Q(λ → ∞) → 1. The sign and the magnitude
of χ depend on the detailed molecular architecture of the elastomer. For in-
stance, χ is found to be large and positive for strongly anisotropic main-chain
elastomers [22]. For side-chain elastomers χ is positive and still substantial
in magnitude when mesogens are attached to the polymer backbone side-on,
while the end-on materials are characterized by a weaker coupling and a low χ
value whose sign depends on the length of the connecting −(CH2)n− spacer:
odd and even n yield χ < 0 and χ > 0, respectively [1]. Note that in real
elastomers the actual sign of χ can also depend on crosslinker type and con-
centration [23]. — Hm, Eq. (3), also reproduces bulk director anchoring to the
average chain direction (here z), typical for LCE [1].

The total Hamiltonian of the model elastomer is given by H = He +Hu +Hm.
We have tested if the model behavior resembles that of a real elastomer [1,8,9]
performing constant-force MC simulations. In each MC cycle, first N re-
orientation moves ui → u′

i were attempted, each accepted with probability
min[1, exp (−∆H/kBT )], where ∆H = H(u′

i, λ) − H(ui, λ) [15,18,24]. These
moves were followed by a constant-volume resize move λ → λ′, accepted
with probability min[1, exp (−∆K/kBT )], where ∆K = H(ui, λ

′)−H(ui, λ)+
ǫNσ∗(λ − λ′) [25], and σ∗ = σa3/ǫ is the dimensionless engineering stress σ.
(This procedure is similar to that used to control pressure, which is described
in detail, e.g., in Ref. [26].) Trial move amplitudes were adjusted to main-
tain an acceptance ratio close to 50%. The sample size was set to N = 303

or 503. At least 6 × 104 equilibration and 6.6 × 104 production MC cycles
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were performed. Stress and temperature scanning runs always used the last
configuration of the preceding run to initialize the one to follow. In all simula-
tions we have used: χ = 0.5 (corresponding, e.g., to a main chain elastomer);
a = 4.6 nm, b = 1 nm, and M = 100 (yielding α ≈ 0.3).

Fig. 2 (top) shows stress-strain isotherms λ(σ∗) for a regularly crosslinked ho-
mogeneous sample with ǫij = ǫ > 0 and 503 unit cells. At no stress (σ∗ = 0) for
T ∗ . 1.141± 0.003 the system shows nematic order leading to a spontaneous
elongation with λ ≈ 1.06. Above this temperature the sample is isotropic
and undeformed, λ ≈ 1. For a ordinary LL model with N = 503 one has
T ∗

NI ≈ 1.123 [27] and the shift of T ∗
NI to higher T ∗ can be attributed to the

presence of the aligning field, Eq. (3). When the sample is stretched in the ne-
matic phase (curves a and b in Fig. 2), a Hookean (almost linear) λ(σ∗) curve
is observed. Taking ǫ ≈ 0.023 eV (from TNI ∼ 300 K), the Young modulus is
E ∼ 52 kPa, i.e., the material is rather soft, while σ∗ = 0.1 corresponds to
σ ∼ 3.8 kPa. In this region the behavior is dominated by the elastic term
He, Eq. (1), so that E ∝ T , which is a signature of entropic elasticity. On the
other hand, when the sample is stretched from the isotropic phase, we find a
stress-induced first-order aligning transition, observed experimentally [9], at a
T ∗-dependent value of σ∗. In this case the interplay of orientational (Hu and
Hm) and elastic (He) terms is responsible for the massive alignment of meso-
genic units. There is observable hysteresis on expansion and contraction, since
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Fig. 2. Regular sample stretched: stress-strain isotherms (top) and light transmit-
tance (bottom). Curves a-g correspond to T ∗ = 1.135 − 1.15, with a step size of
0.0025. Arrows denote the scan direction; note the hysteresis. Inset: Q(λ) depen-
dence.
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for a 503 sample the order-disorder transition in the LL model is characterized
by a free-energy barrier approaching kBT ∗

NI [27]. At high enough tempera-
ture (T ∗ & 1.150), however, the discontinuity in the aligning transition disap-
pears and the λ(σ∗) isotherms become continuous. In between the two regimes
there is a critical point whose position is estimated as σ∗

c = 0.021 ± 0.002,
T ∗

c = 1.149± 0.002. Such critical stress-strain behavior has been predicted by
de Gennes using symmetry arguments [28], and is similar also to the behavior
of ordinary nematics exposed to, e.g., an electric field [29]. In our model, one
can pass at fixed T ∗ from the continuous to the discontinuous regime also
by reducing the α value (i.e., decreasing the crosslink density). Experimen-
tally, equivalent observations are made when data for polymer melts (with
no crosslinks) and for corresponding crosslinked networks are compared [30].
Conceivably, crosslinks could be gradually destroyed (or formed) by suitable
treatments [31].

In a series of impressive experiments the optical behavior of LCE under stress
has been studied [1,8,9]. As the sample is stretched in our simulation, the
nematic director aligns along z, the macroscopic order P z

2
= 〈P2(ui · z)〉 (av-

eraged over lattice sites and MC cycles) increases and the sample becomes
birefringent. We have used the simulated configurations to calculate the in-
tensity transmitted when a linearly polarized beam, directed along the y-axis,
impinges on a sample placed between crossed polarizers at ±45◦ from z. Light
transmittance is given by It = sin2 (πd∆n/λ0) [32], where d denotes sample
thickness, λ0 light wavelength, and ∆n the refractive index anisotropy. For
low ∆n, ∆n ∝ P z

2
, and It depends on orientational ordering. In the simula-

tion, light propagation within each pixel in the xz-plane is modeled using the
Jones matrix formalism [32], assuming that local optical axes coincide with
ui, and neglecting diffraction, as well as scattering [1]. To increase the opti-
cal thickness of the sample, L = 10 light passes were allowed for (yielding
d ≈ 2.3 µm) before averaging the transmitted light intensity over pixels to
obtain It. Lateral contraction upon stretching (d ∝ λ−1/2) was taken into ac-
count as well. Other parameters: birefringence ∆n = 0.2175 (for a perfectly
ordered sample), and λ0 = 632.8 nm (as for a He-Ne laser). The It(σ

∗) plot in
Fig. 2 shows a strict correlation with the λ(σ∗) curves. As long as the sample
is isotropic, almost no light is transmitted, while a nonzero It is a signature
of ordering in the system. Stretching irregular inhomogeneous samples gener-
ally yields a significantly smaller λ and P z

2
at given σ∗, and the λ(σ∗) curves

become continuous. This is in agreement with the experimental observation
that quenched disorder reduces the sharpness of the NI transition [11].

We now turn to an investigation of the effects of structural inhomogeneity
and to temperature scan experiments. We have studied samples (N = 303) of
four different LCE types, A-D, with increasing degree of quenched disorder
obtained by allowing an inhomogeneity in the mesogen-mesogen interaction
strength ǫij . The first type, A, corresponds to a homogeneous LCE with ǫij =
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Fig. 3. Samples A-D: temperature scans. Sample length λ (top), P z
2

(lines) and SL

(symbols) order parameters (center), and transmittance It (bottom). No stress and
σ∗ = 0.1 (solid and dotted lines, respectively). Insets: 2H NMR spectra for σ∗ = 0;
top: sample A, bottom: sample D.

ǫ, as before. For the B, C, and D types, ǫij was sampled from a Gaussian
distribution of width ǫ, centered at 〈ǫij〉 ≈ 0.8ǫ, 0.5ǫ, and 0, respectively. Fig. 3
shows the average elongation and the degree of order for samples A-D, without
stress and with σ∗ = 0.1 (A-B only), against T ∗. We see that when isotropic
samples A-C are cooled down, at a well-defined temperature mesogenic units
align to give nematic order. For unstressed sample A, the transition takes place
at T ∗

A ≈ 1.15 ± 0.01. The mechanical field-induced T ∗
NI shift is slightly higher

than in the larger 503 sample, possibly for a finite-size effect. Like in the LL
model for nematics, the NI transition is weakly first-order, but hysteresis is
less pronounced than in the 503 sample. If, however, the temperature scan is
carried out under stress, for σ∗ = 0.1 > σ∗

c the supercritical regime is reached,
and the transition is smeared out. In samples B and C, the NI transition shifts
towards lower temperatures, with T ∗

B ≈ 0.87 ± 0.01 and T ∗
C ≈ 0.49 ± 0.01,

suggesting that T ∗
NI very roughly scales as 〈ǫij〉. The highly frustrated sample

D, however, remains macroscopically disordered even as T ∗ → 0, as suggested
by P z

2
≈ 0 for all T ∗. To check for local ordering at low T ∗, we have introduced

a “local” order parameter SL, calculated as follows. For each unit cell the
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MC cycle-averaged ordering matrix Qi = 1

2
〈3ui ⊗ ui − I〉 was calculated and

diagonalized. Then the largest eigenvalue Si and the local director ni were
identified, and finally SL = N−1

∑N
i=1

Si. SL takes the role of the Edwards-
Anderson order parameter used for detecting local order in spin glasses [33].
The temperature dependence of SL indeed shows local ordering in the system
(for T ∗ . 0.2): orientational fluctuations of ui are frozen-in along the local ni,
which is analogous to glassy states observed in magnetic systems. The variance
of SL peaks at T ∗

g ≈ 0.1 and locates the transition to a locally ordered glassy
state. Note that sample C (with 〈ǫij〉 6= 0) exhibits both the NI and the
glass transition and thus qualitatively covers the elastomer behavior over a
wide temperature range. Nematic alignment is accompanied by a spontaneous
overall deformation of the sample: for χ > 0 the sample is elongated on cooling.
The deformation magnitude (here ∼ 10%) increases with increasing χ. In
sample D for σ∗ = 0 there is no macroscopic alignment and therefore no
extension, while for σ∗ 6= 0 and T → 0 λ would become artificially large
due to vanishing entropic elasticity [Eq. (1)] at very low temperatures; the
corresponding curves are thus not reported. The transmittance It(T

∗), Fig. 3,
is coherent with the behavior of P z

2
. Here L = 15 and d ≈ 2.07 µm. Light

scattering can again be neglected since refractive index inhomogeneities occur
on length scales far below the wavelength of light, a ≪ λ0.

While light transmission methods measure the overall degree of orientational
order, 2H NMR can be used to probe local order in LCE [1,30,34] and hence
distinguish between isotropic, aligned, and glassy states. Quadrupolar inter-
actions in deuterated mesogenic units result in a frequency splitting ωj

Q =
±δωQP2(uj ·b), where b is the orientation of the NMR spectrometer magnetic
field B and δωQ is a coupling constant. To calculate NMR spectra, for b||z we
generated the free induction decay signal G(t) = 〈exp(i

∫ t
0
ωj

Q(t′) dt′)〉j, where
〈...〉j denotes ensemble averaging, and Fourier-transformed it [35]; neglecting
diffusion. Typical line shapes for samples A and D are shown as insets in Fig. 3.
Below T ∗

NI homogeneous sample A gives double-peaked spectra, with peaks
at ωQ = ±δωQP z

2
. Glassy sample D below T ∗

g , however, yields a Pake-type
powder pattern, with a width proportional to SL. Both results are consistent
with order parameter data.

In conclusion, we have developed a simple and robust coarse-grained model
for homogeneous and inhomogeneous liquid-crystalline elastomers undergoing
uniaxial strain, with fixed director orientation. The stress-induced isotropic-
nematic transition evolves from discontinuous to continuous with increasing
temperature, as well as the elastic stiffness of the system. The model, how-
ever, is limited in describing soft elasticity as it cannot treat shear deforma-
tions. Temperature scans in samples with structural inhomogeneity, resulting
in quenched disorder, reveal, apart from the standard NI transition, the on-
set of a macroscopically disordered glassy state with short-range order only,
similar to that observed in magnetic systems. Our model seems thus capable

8



of describing various elastomer experiments, in particular stress-strain and
temperature behavior. It contains only a small number of microscopic param-
eters: crosslink density, monomer size, number of monomers between neigh-
boring crosslinks, the mesogen-mesogen interaction strength, and the strain-
alignment coupling constant. We have linked these parameters to simulated
experimental observables, transmitted light intensity and 2H NMR spectra,
giving therefore the model significant predictive power.
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Elastomers) Research Training Network funded by the European Union. We
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the FULCE meeting in Ravenna (February 2004). Further financial support
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