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Abstract

We study the effect of molecular dipole strength on the polymor-

phism of smectic A liquid crystals using computer simulations and

density functional theory. We find, for a system of polar Gay–Berne

particles with an off-centre axial dipole, a change in molecular organ-

isation from non interdigitated to interdigitated (SAd) structure.
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1 Introduction

In a simple minded classification of liquid crystals, nematics have long range

orientational order, while smectic phases also have additional translation or-

der corresponding to a layered molecular organisation. The variety of smec-

tics is, however, very wide [1,2] and comprises a number of phases of increas-

ing complexity from the most intuitive instance of molecules perpendicular

to each layer and positionally disordered (SA), to the case of molecules that

are tilted and/or have some degree of positional order inside the layers (SC ,

SB, etc) [1–4].

An additional and perhaps more surprising polymorphism is that found in

smectic A phases formed by strongly polar molecules, in particular rod–like

mesogens with a permanent dipole near one end of the molecule and a single

chain at the other end [2,4–8]. In this case the layer spacing as measured by

X–rays varies between one (SA1) and two (SA2) full molecular lengths, with

intermediate values in interdigitated SAd phases, while the dipoles themselves

can arrange in different ways. Thus a double layer with antiferroelectric

order of dipoles is found in SA2 [3, 6], a striped dipolar domain structure in

SÃ [3, 9], while a compensation of the dipoles seems to be associated with

the interdigitated structure [3].

Another indication of the delicate balance of interactions in these smectics

is the observation, in some cases, of re–entrant nematic phases on further

cooling down an already formed smectic [5].

Disentangling the effect of different molecular interactions such as steric

repulsion, dispersive attraction and dipolar forces (not to mention conforma-

tional and chain length related effects) in real mesogens is not easy, given the

complex nature of the molecules of interest or of their mixtures and there is

a need for simple model systems that could help in understanding the role

of the various contributions.

On an intuitive basis, it would seem reasonable that the position and

strength of the mesogen dipole moment is important in this respect. However,

this is not so obvious and not so easy to demonstrate and there is at least
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one case [10] where, in a computer simulation of a system of hard polar

spherocylinders, only a single monolayers SA phase was obtained irrespective

of the location and strength of an axial dipole. A number of other simulations

of polar hard particles [10, 11] and Gay–Berne (GB) systems [12–15] have

appeared. Central [12, 14] and terminal [13, 14] axial dipoles of different

strength have been studied. The dipoles are generally seen to influence the

nematic–smectic more than the the nematic–isotropic transition. Without

reviewing all the different findings, we just mention that SA and SB phases

have been observed, but not the variety of experimentally observed smectic

phases.

In this paper we wish to investigate to what extent the polymorphism is

affected by the strength of a longitudinal dipole placed at a suitable non–

central position along the molecular axis. To do this we choose to simulate a

system of ellipsoidal particles with length to width ratio 3:1 interacting via an

attractive–repulsive Gay–Berne (GB) potential with an added longitudinal

point dipole as detailed later on in Sec. 2.

We shall present both extensive Monte Carlo (MC) simulations (Sec. 3)

and a theoretical analysis (Sec. 4) and discuss our findings (Sec. 5).

2 Model and computer simulations

We consider a system of elongated uniaxial ellipsoidal particles of length

σe and breadth σs with an embedded axial point dipole at a selected off–

centre position on the axis and we study the influence of the strength of this

molecular dipole on the overall mesophase structure.

The dimensionless pair potential U∗(i, j) = U(i, j)/εs that we adopt is

the sum of a Gay–Berne [19,23] and a dipole–dipole term:

U∗(i, j) = UGB ∗(i, j) + Ud ∗(i, j), (1)

where the Gay–Berne part contains the anisotropic attractive–repulsive con-

tribution between the two particles with orientation vectors ûi, ûj and centre–

centre separation rij = rij r̂ij, and where εs is the energy unit. Molecular
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orientations are defined with respect to the principal axes of particles i, j,

namely ûi ≡ ẑi and ûj ≡ ẑj (we use a cap to indicate a unit vector):

UGB ∗(i, j) = 4ε(r̂ij, ûi, ûj)
[{

σs
rij − σ(r̂ij, ûi, ûj) + σs

}12

−
{

σs
rij − σ(r̂ij, ûi, ûj) + σs

}6]
. (2)

Here ε(r̂ij, ûi, ûj) and σ(r̂ij, ûi, ûj) are the strength of interaction and con-

tact distance whose explicit form is given elsewhere [19, 23]. We employ

shape anisotropy σe/σs = 3, a ratio of side–side to end–end interaction

εs/εe = 5, and GB exponential coefficients µ = 1, ν = 3, correspond-

ing to the parametrisation introduced in [23]. The cutoff radius adopted

is RGB
c = 4.0σs. In the absence of dipoles this GB model, at density

ρ∗ ≡ N/V ∗ = σ3
s/V = 0.3, has a transition from isotropic to nematic phase

at a scaled temperature (T ∗ = kBT/εs) T
∗
NI ≈ 3.55 and then becomes smectic

at T ∗NS ≈ 2.4.

The dipolar energy is given by the standard electrostatic expression:

Ud ∗(i, j) =
µ∗iµ

∗
j

r∗ 3
d

[ẑi · ẑj − 3(ẑi · r̂d)(ẑj · r̂d)] , (3)

where rd ≡ rdr̂d is the vector joining the two point dipoles at distance

rd = σsr
∗
d. We consider an embedded electric point dipole oriented along

the molecular axis, located at an intermediate distance between centre and

end (d∗ = d/σs = 0.65) and dipole moments µ∗i ≡ µ∗ẑi, µ
∗
j ≡ µ∗ẑj, where

µ∗ ≡ (µ2/εsσ
3
s)

1/2 is the dimensionless moment. This choice of dipole location

ensures that a frustration is built into the system as GB and dipolar inter-

actions cannot be simultaneously optimized by a standard smectic layering.

This in turn might be of use in trying to change the molecular organisation

by changing the relative contribution of the dipolar term. The dipolar in-

teraction for particles in the box surrounded by periodic images has been

computed using the Reaction Field method [16, 20, 21], with cutoff radius

RRF
c = 6.0σs.

In the theoretical calculations the intermolecular potential is simplified

by replacing the repulsive part of the Gay–Berne potential with a hard-
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body repulsive term when the molecules approach each other closer than the

contact distance σ(r̂ij, ûi, ûj). With this approximation the intermolecular

potential can be written as

U∗(i, j) = Uhard ∗(i, j) + U soft ∗(i, j), (4)

where Uhard ∗ corresponds to the Hard Gaussian Overlap (HGO) model

Uhard ∗(i, j) =


∞ if rij < σ(r̂ij, ûi, ûj)

0 if rij ≥ σ(r̂ij, ûi, ûj)

, (5)

and the second term U soft ∗, collects the residual interactions, namely, the

remaining “soft” repulsion and attraction of the Gay–Berne part as well the

dipolar interactions

U soft ∗(i, j) =


0 if rij < σ(r̂ij, ûi, ûj)

UGB ∗(i, j) + Ud ∗(i, j) if rij ≥ σ(r̂ij, ûi, ûj)

. (6)

Our MC sample consisted of N = 1000 interacting particles as described in

previous section at a dimensionless density ρ∗ = 0.3 and we have investigated

several temperatures T ∗ corresponding to nematic and smectic phases for the

apolar systems. We have used canonical (constant volume and temperature,

NVT) conditions as in [23] and with a cubic periodic boundary conditions.

The simulations were typically run in a cooling sequence with equilibra-

tion runs of ≈ 200 kcycles and production runs of 100-300 kcycles. Observ-

ables for averaging and data analysis were accumulated during production

runs sampling one configuration each 20. The MC evolution of configurations

takes place via positional and orientational moves [23] with the addition of

attempted dipole flips to prevent locking in metastable states [14], a flip move

being a rotation of 180 degrees around the particle x axis. The flip moves

were randomly attempted with a 20% frequency compared to the 80% of the

conventional translational–orientational moves.
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3 Results from simulations

We plot in Fig. 1 our results for the average values of the dimensionless Gay–

Berne energy per particle 〈UGB ∗〉, the dipolar energy 〈Ud ∗〉 and the second

rank orientational order parameter 〈P2〉, at different temperatures for the

three dipole strengths.

The orientational order parameter 〈P2〉 = 〈(3(û · ê)2 − 1)/2〉 was calcu-

lated as in [23] obtaining at each selected configuration the director ê from

diagonalisation of the ordering matrix [18, 27, 28]. Similarly, 〈P1〉 = 〈û · ê〉
was routinely calculated, but was always found to be zero within error and

thus it is not reported here.

All the systems studied present an isotropic–nematic (NI) and a nematic–

smectic (NS) transition in the temperature range studied. The order pa-

rameter increases regularly with decreasing temperature, with no sign of

re–entrance in all the cases studied.

We notice that switching on and increasing the strength of the dipole

has a greater effect on the nematic–smectic transition which is shifted to

lower temperature. The temperature shift is, however, not monotonous with

respect to dipolar strength as we can see from Fig. 1. The nematic–isotropic

transition is not affected much by the dipole, as was also found for the case

of central axial dipole for a GB system with a different parametrisation [12],

while a significant shift to higher temperatures was instead found for the

nematic–isotropic transition in strongly polar GB particles with a terminal

dipole (from T ∗NI = 2.2 to T ∗NI = 3 going from µ∗ = 0 to µ∗ = 2 [13]).

In this work we have concentrated on the smectic phases and on the

types of polar organisation obtained. Inspection of the snapshots (Fig. 2)

allows some interesting observations to be made concerning the molecular

arrangement. The lowest dipole µ∗ = 1 system is characterized by monolayer

smectic, in which each layer contains approximately an equal number of

molecules with dipole moments pointing “up” and “down” (shown in Fig. 2

as red and blue arrows), along the director, so that the layers have no net

polarisation. By contrast, the dipolar molecules with µ∗ = 1.5 and µ∗ = 2
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tend to be arranged in such a way that the opposite dipoles in neighbouring

molecules are located at a minimum distance, giving rise to the formation

of interdigitated smectic SAd phases, with layer spacing σe < sd < 2σe.

Corresponding to this pairing, the dipolar contribution to the energy goes

from being essentially negligible for µ∗ = 1 to slightly negative for µ∗ = 1.5

and reaching a 25% of the total energy for µ∗ = 2 (Fig. 1).

In order to analyze in a quantitative way the molecular and dipolar or-

ganisation, we have computed the radial distribution functions g0(r) as

g0(r) =
1

4πr2ρ
〈δ(r − r12)〉12, (7)

where 〈. . .〉12 represents an average with respect to all the molecular pairs,

and the density along the director g(z)

g(z) =
1

πR2ρ
〈δ(z − z12)〉12, (8)

which gives the probability for the intermolecular vector to have a projection

z along the director. Here z12 = r12·ê is measured with respect to the director

frame and R is the radius of a cylindrical sampling region and the averages

were computed over all the molecular pairs. The density of dipoles along the

director g(zd) has been determined in a similar fashion using zd12 = rd · ê.

We have also computed the spatial–orientational correlation function S110(r) [25]

S110(r) = − 1√
3
〈δ(r − r12) (ẑ1 · ẑ2)〉12, (9)

which is basically the average scalar product between the orientation of two

molecules at distance r and describes their tendency to align themselves

parallel or antiparallel, as a function of separation.

In the case µ∗ = 1 (Figs. 3 a–d), g0(r) shows the characteristic double

peak of an hexagonal arrangement of molecules in smectic layers; the strong

layering is confirmed by the function g(z), while g(zd) indicates also a double

stratification of dipoles “up” and “down” within each molecular layer (see

also Fig. 2); finally the averaged Stone function S110(r) shows a weak cor-

relation of antiparallel pairs. This indicates that the monolayer smectic is

really of what we could call a SB1 type.
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Increasing the dipole to µ∗ = 1.5 (Figs. 4 a–d) and also to µ∗ = 2

(Figs. 5 a–d), the g0(r) gives a more complicated succession of peaks. At

short range these small peaks are due to molecules which are not confined to

the same plane as the molecule at the origin, but are also placed in the upper

and lower neighbouring layers. Also the density g(z) showing the splitting

of the first peak and a spacing smaller than ≈ 2σs, which is significantly less

than the scaled molecular length 3σs is consistent with a structure where

the layers are strongly interdigitated. The dipolar density g(zd) presents the

same periodicity and also indicates that dipoles tend to organize themselves

in the interdigitation regions forming well defined antiferroelectric planes of

closely packed dipoles (see also Fig. 2). Finally the S110(r) denotes the ten-

dency for neighbouring dipoles to have parallel correlations.

4 Theory

We now turn to developing an approximate theory for the structure of highly

ordered smectics of polar molecules. We wish to complement the simulation

study, particularly examining the predicted effect of changing dipole position

and strength.

We start by considering a system of N polar molecules in a volume V

and at temperature T , interacting with the pair additive potential given in

eqn. 4. Working in the NV T ensemble the equilibrium Helmholtz free energy

per particle is approximated by extending the variational cluster expansion

method [26] for describing spatially inhomogeneous ordered fluids. Retaining

the lowest order of the approximation, the derived form of the free energy

is a generalisation of the Onsager free energy and is appropriate to describe

order–disorder transitions (including isotropic, nematic and smectic A phase

symmetries).

Let us assume that the system can exhibit one–dimensional long–range

positional order, with periodicity sd along the macroscopic Z-axis while, in

the XY -plane, it behaves as a two–dimensional liquid. In this case the singlet
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distribution function (SDF) is of the form:

P (r, û) =
sd
V
f(z,ω), (10)

with f(z,ω) = f(z±nsd,ω), n = 0, 1, 2, . . ., where ω is the orientation of û.

According to the variational cluster approximation the free energy density

can be written as

F

NkBT
=

F ideal

NkBT
− S

NkB
+

F int

NkBT
, (11)

with
F ideal

NkBT
= ln ρΛ3 − 1, (12)

the ideal part, with Λ the de Broglie mean thermal wavelength. The second,

entropic, term in eqn. 11 corresponds to the loss of entropy if the SDF is not

isotropic or spatially uniform:

S

NkB
= −

∫ sd

0
dz
∫
dωf(z,ω) ln[sd f(z,ω)]. (13)

The last term in eqn. 12 corresponds to the interaction contributions

F int

NkBT
=

1

2
ρsd 〈〈q(z12,ω1,ω2)〉〉f , (14)

where

q(z12,ω1,ω2) =
∫ ∞
−∞

dx12dy12(1− exp[−U(r12,ω1,ω2)/kBT ]), (15)

is the positional–orientational integral of the Mayer function of the inter-

molecular potential (eqn. 4) and the double brackets indicate double aver-

aging of the enclosed quantity with respect to the two singlet distributions

f(z1,ω1) and f(z2,ω2). In the same approximation the one particle distri-

bution function is in turn given by:

f(z,ω) = ζ−1 exp [−ρsdq̄(z,ω)] , (16)

with

ζ =
∫ sd

0
dz
∫
dω exp [−ρsdq̄(z,ω)] , (17)
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and

q(z1,ω1) =
∫ ∞
−∞

dz2

∫
dω2q(z12,ω1,ω2)f(z2,ω2). (18)

eqns. 16 and 18 constitute a set of self consistency conditions from which,

given T , ρ and sd, the singlet distribution function is determined. Finally, for

the layered phase, the requirement of minimisation of the free energy with

respect to the layer spacing provides the equilibrium periodicity sd.

It is well known that molecular theories for hard particles with shape

anisotropy can give, on the above level of the approximation, only a qualita-

tive description of the phase sequence. However, the resummation procedure

of Parsons and Lee [29–31], with a simple rescaling of the number density,

incorporates indirectly in the free energy all contributions due to molecules

clusters of order higher than two. This procedure leads to a fairly good quan-

titative description of equations of state involving liquid crystalline phases.

Unfortunately, there are no analogous schemes for systems with particles

interacting with “soft” interactions.

Taking advantage of the separation of the intermolecular potential into a

“hard” and a “soft” term according to eqns.4–6 we have:

q(z12,ω1,ω2) = q0(z12,ω1,ω2) + q1(z12,ω1,ω2), (19)

with

q0(z12,ω1,ω2) =
∫ ∞
−∞

dx12dy12(1− exp[−Uhard(r12,ω1,ω2)/kBT ]), (20)

and

q1(z12,ω1,ω2) =
∫ ∞
−∞

dx12dy12 exp[−Uhard(r12,ω1,ω2)/kBT ]

× (1− exp[−U soft(r12,ω1,ω2)/kBT ]). (21)

Using eqn. 14 and assuming a standard resummation procedure (concerning

the “hard” part of the interaction potential) for the contributions to the free

energy from particle clusters larger than two (i.e. Parsons–Lee approxima-

tion [29–31]), the free energy can be rewritten as:

F int

NkBT
=

F hard

NkBT
+

F soft

NkBT
, (22)

10



with
F hard

NkBT
=

1

2
ρ sd a(η)〈〈q0(z12,ω1,ω2)〉〉f , (23)

and
F soft

NkBT
=

1

2
ρ sd 〈〈q1(z12,ω1,ω2)〉〉f , (24)

and the singlet distribution function which now becomes

f(z1,ω1) = ζ−1 exp [−ρsd(a(η)q0(z1,ω1) + q1(z1,ω1))] , (25)

where we use the Parson–Lee approximation

a(η) =
(4− 3η)

4(1− η)2
, (26)

instead of having a(η) = 1 which corresponds to the simple two–molecule

cluster approximation, with η = Nv0/V , v0 the volume of the hard core of

the particles.

Since we wish to study the nematic–smectic transition and the molec-

ular organisation in the smectic phase, we make the assumption that the

molecules are restricted to have their axes parallel. This assumption is con-

sistent with our computer simulation results according to which, the second

rank orientational order parameter takes in these smectics quite high val-

ues, 〈P2〉 ≥ 0.9. In this limit, integrals over orientations in the relations

of this sections are replaced by a summation over the two distinct orienta-

tions w, corresponding to the molecular dipole parallel w+ or antiparallel

w− to the macroscopic Z axis:
∫
dω ⇒ ∑

{w+,w−}. The above restriction

on the molecular orientations simplifies considerably the calculations of the

positional–orientational functions of eqns. 20 and 21. Thus, q0(z12, w1, w2)

is readily calculated analytically and q1(z12, w1, w2) by numerical integration

(see the Appendix). Having the above kernels the self consistency condition

in eqn. 25 is solved iteratively [32].

4.1 Results from theory

We find that for a system of purely repulsive hard gaussian overlap ellipsoids,

where the dipolar and attractive Gay–Berne interactions are absent, the ne-
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matic to smectic phase transition is exhibited at ρ∗HGO ≈ 0.34. When the

attractive part of the GB potential is included the smectic phase is stabilized

with respect to the nematic, since the nematic to smectic transition moves

to densities below ρ∗HGO, for the whole range of temperatures.

It is known that using the Parsons–Lee resummation [29–31] the transi-

tion densities of hard anisotropic systems are predicted fairly well. Thus we

have chosen for the theoretical calculations the same density employed in the

NVT MC simulations. Notwithstanding the good success of theory for the

purely repulsive term, it is known that this type of theory strongly overesti-

mates the transition temperature at given density [33]. In an effort to make

contact and compare with simulation results, this has led other workers [33]

to invoke different adjustable scaling factors for the strength of the average

attractive contributions in the various phases (isotropic, nematic, smectic).

Here we are interested in how the dipolar interactions affect the molecular

organisation in smectics and thus we simply compare theory and simulation

using a reduced temperature scale (T ∗NS/T
∗
0 ), at constant density ρ∗ = 0.3,

as a function of the dipolar strength µ∗ (Fig. 6). Here T ∗0 is the tempera-

ture at which the transition for the apolar system takes place. The different

curves correspond to theoretical results for various dipolar displacement, d∗,

from the centre of the molecule. The symbols correspond to the scaled tem-

peratures (T
∗(MC)
NS /T

∗(MC)
0 ) obtained from the MC simulations of the system

with dipoles positioned at distance d∗ = 0.65 from the molecular centre, as

described in the previous section.

As suggested by the plots of Fig. 6, the presence of a central dipole

(continuous line) clearly moves the transition to higher temperatures and

stabilizes the smectic phase with respect to the nematic in agreement with

previous simulation results in both Gay–Berne [15] and hard spherocylin-

der systems [22]. The situation changes upon displacing the dipole from

the molecular centre. In contrast to the central dipoles, we see that for the

shifted dipoles increasing µ∗ up to µ∗ ≈ 1.5 destabilises the smectic phase

with respect to the nematic as we have also found from MC simulations,
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at least for d∗ = 0.65. Thus, for small and moderate dipolar strengths the

nematic–smectic transition takes place at a lower temperature upon moving

the dipole from the centre near to the end of the molecule. For fairly strong

dipoles (µ∗ ≥ 2) layered phase gains some stability, probably in connection

to bilayer formation. However, it should be noted that for strong dipoles

the validity limits of the theory are reached since molecular association, due

to dipolar dimerisation, is expected to play a crucial role in the system be-

haviour [17]. Quite similarly, computer simulations where evolution takes

place by standard single particle moves would potentially run into difficulties

due to the dimerisation. In such cases cluster moves [34] should probably be

employed.

The layer spacing appears in general, to be quite sensitive to both dipolar

position and strength. Referring explicitly to the case of d∗ = 0.65, studied

in this paper, we see that the theoretical prediction for the nematic–smectic

transition temperature is in fairly good agreement with the MC results. In-

deed, the layer spacing for µ∗ = 1 lies in the range 3.5 to 3.6σs (i.e. 1.16–

1.2σe), and is practically temperature independent, indicating a well defined,

not interdigitated, monolayer smectic structure. On increasing the dipolar

strength the layer spacing at the transition becomes wider and increases with

lowering the temperature, going up to 4.5σs (i.e. 1.5σe). At the same time, as

can been seen in Fig. 7, the density profile within the layers becomes broader

(µ∗ = 1.5) and for µ∗ = 2 splits in two distinct sublayers indicating clearly

a bilayer structure. In the latter case the distance between the two peaks

approaches the separation distance 4.0σs (i.e. 1.3σe) of the centres of two

molecules with their dipoles dimerized in an antiparallel configuration.

5 Conclusions

Computer simulations and variational theory suggest that the overall molec-

ular organisation of a smectic made of polar uniaxial mesogens and its dipole

organisation are strongly influenced by the strength of the dipole when

13



the latter is located at an intermediate position between the centre of the

molecule and its end. At low temperatures a strongly interdigitated struc-

ture SAd , with an antiparallel arrangement of dipole moments, is formed and

the degree of overlap between layers increases as the dipole strength becomes

larger. Indeed, the origin of this structure may be due to the local coupling of

the dipoles, which produces staggered configurations that cannot be packed

into simple smectic monolayers.
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Appendix: Calculation of q0 and q1

The excluded “area” of two parallel ellipsoids as a function of their centre-to-

centre distance (the projection of the intermolecular vector on their common

orientation) is easily calculated analytically

q0(z12, w1, w2) = π

(
σ2
s −

z2
12

k2

)
Θ(σ2

sk
2 − z2

12), (27)

where Θ is the Heaviside step function and k = σe/σs. Obviously, there is no

dependence left on the “up-down” orientation of the molecules. Due to the

long range character of the dipolar interactions we separate the calculation

of q1(z12, w1, w2) in two parts:

(i) The short range part qs1(z12, w1, w2) which is calculated numerically. Per-

forming the integrations on cylindrical coordinates we have

qs1(z12, w1, w2) = 2π
∫ Rc

0
dρ12ρ12

(
1− exp

[
− 1

kBT
U soft(r12, w1, w2)

])
,

(28)

where Rc is the cut-off distance for the Gay–Berne potential RGB
c .

(ii) The long range part ql1(z12, w1, w2), where UGB = 0. In this case the term

(1−exp[−Ud(r12, w1, w2)/(kBT )]) is expanded in powers of µ2/(r3
d kBT )

and we get

ql1(z12, w1, w2) = 2πsd

∫ ∞
Rc

dρ12ρ12

∑
m=1

1

m!

(
− 1

kBT
Ud(r12, w1, w2)

)m
,

(29)

where Rc = 0 if |z12| > RGB
c and Rc = RGB

c if |z12| ≤ RGB
c . In the above

expansion each term can be calculated analytically. In our calculations

we have truncated the expansion past the sixth term.

Having obtained the functions q0(z12, w1, w2) and q1(z12, w1, w2) we can

proceed to calculate the SDF at a given T and ρ for various periodicities sd.

This is done numerically using the following iterative scheme [32]:

fm+1(z1, w1) = ζ−1 exp
[
−ρsd

(
a(η)〈q0(z12, w1, w2)〉fm(z2,w2)

+〈q1(z12, w1, w2)〉fm(z2,w2)

)]
, (30)
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with convergence criterion |fm+1(z1, w1) − fm(z1, w1)| < 10−5σ−1
s , ∀(z1, w1).

The single bracket indicates averaging with respects to the singlet distribu-

tion fm(z2, w2).

18



List of Figures

1 Temperature dependence of the average dimensionless Gay–
Berne 〈UGB ∗〉 and dipolar 〈Ud ∗〉 energies per particle (plates a,
c, and e) and of the second rank orientational order parameter
〈P2〉 (plates b, d, and f) for the three dipole strengths studied
with the MC simulations described in the text. . . . . . . . . . 20

2 Snapshots of the molecular organisation from the Monte Carlo
simulations of the N = 1000 system with an axial dipole: (a)
µ∗ = 1 and T ∗ = 1.2 (SB); (b) µ∗ = 1 and T ∗ = 1.8 (N); (c)
µ∗ = 1.5 and T ∗ = 0.8 (SAd); (d) µ∗ = 1.5 and T ∗ = 1.2 (N);
(e) µ∗ = 2 and T ∗ = 1.2 (SAd); (f) µ∗ = 2 and T ∗ = 2 (N). . . 21

3 Correlation functions from MC simulations: (a) radial g0(r∗),
(b) density along the director g(z∗), (c) orientational S110(r∗),
and (d) dipolar density along the director g(z∗d) for the system
of N = 1000 rods with axial dipole µ∗ = 1. The estimated
fluctuations, shown here as error bars, are plotted each 10
sampling bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Correlation functions from MC simulations: (a) radial g0(r∗),
(b) density along the director g(z∗), (c) orientational S110(r∗),
and (d) dipolar density along the director g(z∗d) for the system
of N = 1000 rods with axial dipole µ∗ = 1.5. The estimated
fluctuations, shown here as error bars, are plotted each 10
sampling bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Correlation functions from MC simulations: (a) radial g0(r∗),
(b) density along the director g(z∗), (c) orientational S110(r∗),
and (d) dipolar density along the director g(z∗d) for the system
of N = 1000 rods with axial dipole µ∗ = 2. The estimated
fluctuations, shown here as error bars, are plotted each 10
sampling bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Scaled nematic–smectic transition temperatures, at constant
density ρ∗ = 0.3, as a function of the dipolar strength µ∗,
for different distances d∗ of the dipole from the centre of the
molecule. The curves are results obtained from variational
cluster theory. The values from the MC computer simulation
with d∗ = 0.65 (stars) are reported for comparison. . . . . . . 25

7 Singlet distribution function at T ∗NS/T
∗
0 = 0.33 as obtained

from variational cluster theory for the three different dipolar
strengths and d∗ = 0.65. . . . . . . . . . . . . . . . . . . . . . 26

19



(a) (b)

0 1 2 3 4 5
T*

-16

-12

-8

-4

0

4

〈  U
*   〉

(µ* = 1.0)
〈  UGB *  〉
〈  Ud *  〉

0 1 2 3 4 5
T*

0.0

0.2

0.4

0.6

0.8

1.0

〈  P
2  〉

(µ* = 1.0)

(c) (d)

0 1 2 3 4 5
T*

-16

-12

-8

-4

0

4

〈  U
*   〉

(µ* = 1.5)
〈  UGB *  〉
〈  Ud *  〉

0 1 2 3 4 5
T*

0.0

0.2

0.4

0.6

0.8

1.0
〈  P

2  〉
(µ* = 1.5)

(e) (f)

0 1 2 3 4 5
T*

-16

-12

-8

-4

0

4

〈  U
*   〉

(µ* = 2.0)
〈  UGB *  〉
〈  Ud *  〉

0 1 2 3 4 5
T*

0.0

0.2

0.4

0.6

0.8

1.0

〈  P
2  〉

(µ* = 2.0)

Figure 1: Temperature dependence of the average dimensionless Gay–Berne
〈UGB ∗〉 and dipolar 〈Ud ∗〉 energies per particle (plates a, c, and e) and of
the second rank orientational order parameter 〈P2〉 (plates b, d, and f) for
the three dipole strengths studied with the MC simulations described in the
text.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Snapshots of the molecular organisation from the Monte Carlo
simulations of the N = 1000 system with an axial dipole: (a) µ∗ = 1 and
T ∗ = 1.2 (SB); (b) µ∗ = 1 and T ∗ = 1.8 (N); (c) µ∗ = 1.5 and T ∗ = 0.8
(SAd); (d) µ∗ = 1.5 and T ∗ = 1.2 (N); (e) µ∗ = 2 and T ∗ = 1.2 (SAd); (f)
µ∗ = 2 and T ∗ = 2 (N).
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Figure 3: Correlation functions from MC simulations: (a) radial g0(r∗), (b)
density along the director g(z∗), (c) orientational S110(r∗), and (d) dipolar
density along the director g(z∗d) for the system of N = 1000 rods with axial
dipole µ∗ = 1. The estimated fluctuations, shown here as error bars, are
plotted each 10 sampling bins.
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Figure 4: Correlation functions from MC simulations: (a) radial g0(r∗), (b)
density along the director g(z∗), (c) orientational S110(r∗), and (d) dipolar
density along the director g(z∗d) for the system of N = 1000 rods with axial
dipole µ∗ = 1.5. The estimated fluctuations, shown here as error bars, are
plotted each 10 sampling bins.
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Figure 5: Correlation functions from MC simulations: (a) radial g0(r∗), (b)
density along the director g(z∗), (c) orientational S110(r∗), and (d) dipolar
density along the director g(z∗d) for the system of N = 1000 rods with axial
dipole µ∗ = 2. The estimated fluctuations, shown here as error bars, are
plotted each 10 sampling bins.
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Figure 6: Scaled nematic–smectic transition temperatures, at constant den-
sity ρ∗ = 0.3, as a function of the dipolar strength µ∗, for different distances
d∗ of the dipole from the centre of the molecule. The curves are results ob-
tained from variational cluster theory. The values from the MC computer
simulation with d∗ = 0.65 (stars) are reported for comparison.
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Figure 7: Singlet distribution function at T ∗NS/T
∗
0 = 0.33 as obtained from

variational cluster theory for the three different dipolar strengths and d∗ =
0.65.
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