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env ironments  
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The large zero-field splitting of certain biradicals makes them important 
candidates for spin probes of anisotropic systems such as liquid crystals and 
membranes. The electron resonance spectrum of a biradical dissolved in a 
liquid crystal may be influenced by the zero-field splitting in two quite 
distinct ways. Firstly the line positions are affected because the spin probe is 
partially oriented by the liquid crystal solvent. In addition the zero-field 
splitting coupled with the molecular reorientation constitutes a powerful 
spin relaxation process and so may determine the widths of the spectral 
lines. Here we develop a theory of such line broadening, within the limit of 
fast motion, and show how it results in an angular dependence of the line- 
widths. The application of the theory is illustrated by studying the line 
broadening for a nitroxide biradical dissolved in a nematic mesophase. An 
analysis of the angular dependence of the linewidths suggests that the 
diffusion model provides a better account of molecular reorientation in a 
liquid crystal than the strong-collision approach. Finally we draw attention 
to the potential value of the theory for understanding the linewidth variations 
in the deuteron magnetic resonance spectra of liquid crystals. 

1. INTRODUCTION 
Electron resonance spectroscopy can often be used to investigate a diamagnetic 

system simply by adding a radical, or spin probe, whose interaction with its environ- 
ment  is reflected in the electron resonance spectrum. T h e  nature of the system 
should, of course, play a dominant  role in the choice of spin probe. For  example, 
if the system to bc studied is a liquid crystal, such as a membrane,  then two 
properties of the spin probe are of pr ime importance.  T h e  molecules must  
deviate significantly f rom spherical symmet ry  so that they may be highly oriented 
by  their  anisotropic environment.  Secondly there must  be considerable aniso- 
t ropy in the magnetic interactions in order  for the extent of the partial alignment 
to be rcadily discernible in the electron resonance spect rum [1]. These  
anisotropic interactions may also influence the widths of the lines as well as their 
positions because the anisotropy coupled to the molecular reorientation invariably 
constitutes a powerful  spin relaxation process [2]. Consequently the spectrum 
of the spin probe may often exhibit a characteristic l inewidth variation and, 
because of the anisotropic nature of the environment ,  this variation will depend 
on the sample orientation with resepct to the magnetic field. An unders tanding 
of such lincwidth effects is important  not  only as an aid to a correct  spectral 
analysis but  also because the linewidths contain valuable information relating to 
both  the dynamic and static behaviour of the system [2-4]. 

"~ Present address: The "Weizmann Institute of Science, Rehovot, Israel. 
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500 G.R.  Luckhurst et al. 

Nitroxide monoradicals are the most common spin probes and the theory 
needed to understand the linewidths of such doublet state species dissolved in 
anisotropic environments is well advanced [2-5]. Indeed it has been employed 
to considerable advantage in the study of membranes [5, 6] as well as nematic [7] 
and smectic liquid crystals [4]. The synthesis of stable nitroxide biradicals has 
meant that they are also candidates for use as spin probes of anisotropic systems. 
They possess one clear advantage over their monoradical counterparts, for in 
addition to the anisotropic hyperfine and Zeeman interactions there is also the 
totally anisotropic zero-field splitting. This interaction can be of particular 
importance because, unlike the other two, its magnitude can be varied dramatically 
by modifying the structure of the biradical [8]. Several preliminary studies [8, 9] 
have already demonstrated the potential of nitroxide biradicals as spin probes 
although there is no theory available with which to interpret and exploit the 
linewidth variations observed in such experiments. We therefore develop, in 
this paper, a theory of spin relaxation for a triplet state spin probe dissolved in an 
anisotropic system. The predictions of the theory are then tested by comparison 
with the angular dependence of the linewidths observed for a nitroxide biradical 
dissolved in a nematic mesophase. 

Finally we would emphasize that the problem which we have solved is identical 
in form to quadrupole relaxation of a nucleus of spin 1 in a magnetic field. Our 
theory could therefore be of considerable value in the recent important studies of 
membranes and other liquid crystals employing deuteron magnetic resonance [10]. 

2. THEORY 
The majority of stable biradicals are formed by linking two nitroxide groups 

together; consequently the dominant magnetic interactions are the zero-field 
splitting together with the Zeeman and nitrogen hyperfine couplings. However, 
in developing the theory, we shall find it convenient to ignore all hyperfine 
interactions and such an assumption will be permissible provided the zero-field 
splitting exceeds the hyperfine interaction. In situations where the hyperfine 
terms are important it would be a straightforward matter to extend the present 
theory although the book-keeping could become somewhat involved [11]. We 
begin by obtaining the static spin hamiltonian for a biradical in an anisotropic 
environment and then proceed to the spin relaxation problem. 

2.1. Stat ics  
The spin hamiltonian for a given orientation of a biradical may be written, in 

irreducible spherical tensor notation [12], as 
~ = ~ o +  ~ ( _  1)PD~,p)T(Z,-p), (1) 

p 
where ~ 0  contains the orientation independent Zeeman and exchange inter- 
actions. In the second term, D (~, P) is thepth  component of the zero-field splitting 
tensor and T (a,-p) is the appropriate combination of total electron spin operators. 
We list the components of the spatial and spin operators, which we use, in table 1 
because various definitions are encountered in the literature. 

This spin hamiltonian is written in a molecular coordinate system and so the 
spin operators fluctuate in time as the molecule reorients ; it is this motion which 
combines with the zero-field splitting to yield the spin relaxation process. The 
time dependence may be removed from the spin operators by transforming to a 
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Spin relaxation 501 

p D(~, v) T(~,v) 

0 (3/2V ~ Dzz (2/3)~/' {S 2 -  (1 ]4) (S+S_ + S_S+)} 
+1 -T-(Dxz +_ iDyz )  -Y-(1/2)(S+Sz+SzS+) 
+ 2 (1/2) (Dxx-Drr +_ 2iDxr) (1/2)S~: s 

Table 1. The irreducible spherical tensor components. 

space fixed coordinate system which we choose to contain the symmetry axis of 
the ordering potential responsible for the partial alignment of the spin probe. 
This gives 

W(t)  =W0 + ~ ( _ 1)vD r v)~q, _v(*)(t) T (2, q), (2) 
P, q 

where ~q, _,(2)(t) is a second rank Wigner rotation matrix which contains the 
complete time dependence of the spin hamiltonian. The molecular motion is 
assumed to be sufficiently fast that the static spin hamiltonian may be obtained 
by taking a time or ensemble average of equation (2). In other words, the relevant 
rotational correlation times are smaller than the inverse of the zero-field splitting. 
We therefore require the average ~q, _p(s) and for an environment with D~n 
symmetry, such as a nematic or smectic A liquid crystal, this quantity vanishes 
unless q is zero. The static spin hamiltonian is then 

= ~ o  +/3<3, o)T<~, o), (3) 

where the partially averaged zero-field splitting is defined by 

/3<2, o)= Z ( - 1 )vD(~, P)~o. _(2), (4) 

and ~0, _p(2) is a measure of the alignment of the spin probe by its environment. 
This spin hamiltonian corresponds to a triplet state with a cylindrically symmetric 
zero-field splitting tensor and the magnetic behaviour of such a system is 
completely understood [13]. When the magnetic field is parallel to the symmetry 
axis of D the three triplet spin functions 11 ), 10) a n d [ -  1 ) are eigenfunctions of 
~ .  For all other orientations of the sample these spin states are mixed by the 
zero-field splitting, however provided D is small in comparison with the Zeeman 
splitting then the triplet functions are good approximations to the eigenfunctions. 
Within this high-field approximation the two allowed transitions are 

} and (5) 
l- 1)~10)-1- ). 

The electron resonance spectrum therefore contains two lines with resonant fields 

/h% 3/3 ,, P2(cos r),  (6) 

where / ) ,  is the cartesian component of the partially averaged zero-field splitting 
tensor parallel to its symmetry axis and so to the director ; the angle between the 
magnetic field and the director is 7. The spacing between the two spectral lines 
changes dramatically with this angle and we shall now see that the linewidths 
should also exhibit a pronounced angular dependence. 

M.P. 2 K 
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502 G.R .  Luckhurst et al. 

2.2. Dynamics 
It is necessary to calculate the linewidths using the Binsch formalism [14] 

because for certain orientations of the sample the separation between the two 
spectral components is comparable to the linewidth. Under such conditions 
Redfield's relaxation theory alone is unable to predict the line shape in contrast 
to the situation when the transitions are either degenerate or well resolved [15]. 
Since the motion is assumed to be fast the line shape in a slow-passage, low-power 
electron resonance experiment is given by [14] 

Av(oJ) oc Re {$+. Ivl0-t. a}. (7) 

The vector $+ is composed of the matrix elements (KtS+I~'), where ]~) 
denotes an eigenfunction ofd~ ; a is defined as 

and i= is the density matrix describing the spin system. The matrix M o is related 
to Redfield's relaxation matrix R [15] and the transition frequencies by 

M 0 ; ~,,aa, = i(oJ.~, - oJ)3.a3K,a, + R.K,, aa'. (9) 

For the triplet-state problem the vectors $+ and a are both proportional to 
(1,1). The resonant frequencies may be replaced by resonant fields because, 
according to equation (6) there is a 1 : 1 correspondence between magnetic field 
and frequency. The relaxation matrix is calculated, in the usual way, from the 
dynamic spin hamiltonian ~,%f'(t) which is obtained by subtracting the static spin 
hamiltonian from its instantaneous value ~ ( t ) .  Thus 

~ ' ( t )  = • ( - 1)PD (2,p) {~ , (10) q, _p(~)(t) - ~o, _p(~)80q} T (~' q) 
:o, q 

where T (~, q) depends on the orientation of the director with respect to the magnetic 
field. This angular dependence is removed by transforming the spin operator 
to a laboratory frame containing the field 

5~f' (t) = • ( - 1 )PD (~, P) (~q, _.(~)(t) - ~o, -.(~)S0q) ~r, q(2)T(~, % (11 ) 
lo ,q ,r  

which we write formally as 

~f '  (t) = •( - 1)rF (*, r) T(*, -.r), (12) 
r 

where F (~,r) contains both the time and angular dependence of the dynamic 
perturbation. The relaxation matrix is then found to be 

[+) [-) 

R - (  B A 
where the basis functions correspond to the two allowed transitions; the matrix 
elements are 

A = - (~go + ~gl +g2) (14) 
and 

B = - J 1 .  (15) 

These spectral densities are related to the fourier transform of the correlation 
function for the spatial operator F (~,r) by 

Jr = �89 S Ft~'~(O)Ft2"r)*(t) exp ( - irwot ) dt. (16) 
- - c o  
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Spin relaxation 503 

The matrix M o is then 

[i(~o0 + 3 - o J )  + A  B ] (17) 
M~ B i ( % - 3 - w ) + A  ' 

within the same basis. The angular dependence of the spectrum is contained 
entirely within M o for, as we have seen, the relaxation matrix elements depend on 
the sample orientation and in addition 

3 = ~-D,, P~(cos y). (18) 

The general expression for the absorption spectrum is found to be 

A - B + i ( % - o J )  
,s oc - Re [A ~'(-~o----~-~)]~+---3~--B~J" (19) 

This adopts a particularly simple form for three limiting situations. One occurs 
when cosy equals 1/~/3 for then the two transitions are degenerate, and setting 

equal to zero in equation (19) shows that this single line has a lorentzian shape 
with a w id th  

Tz -a = - (A + B). (20) 

At the other extreme the two lines are well resolved and so the line separation 
3 is large compared with the linewidth whose magnitude is of order A. In addition 
inspection of equations (14) and (15) for A and B reveals that B is always less than 
A, consequently 8 > B. The off-diagonal elements in M o may therefore be ignored 
and the spectrum calculated from equation (17) is found to be a sum of two 
lorentzians separated by 3 and with equal widths : 

T~-I= - A .  (21) 

For intermediate situations the entire line shape should be computed from 
equation (19); fortunately this is not always necessary. When the molecular 
motion is slow in the sense that the rotational correlation time is large compared 
with the inverse of the microwave frequency COo, then the non-secular spectral 
densities Ja and J2 are small in comparison with the secular contribution do. 
Under these conditions B may be ignored in comparison with A and the line shape 
is lorentzian for all sample orientations with a width 

T~ -1= - A ,  

= 3 j  (22) 0" 

In the remainder of the linewidth calculation for the electron resonance spectrum 
of the biradical we shall take this to be the case. 

The calculation demands a knowledge of the spatial operator F (~,r) which is 
obtained by a direct comparison of equations (11) and (12). This operator may 
then be used to evaluate the spectral density do, for a particular orientation as 

do= ~ (-- 1)2~+p'D(~,p)D(Z,p')*~o,(~)~o,q,(~) * 
p,2a" q,q" 

)< �89 i (~q, --P(2)(0)~q ',-p (2)*(t) -- ~0,--p (2) ~0, --io'(2)~0q 30q'} at. (23) 
-co 

The simplification of this multiple summation is entirely analogous to the 
procedure adopted in calculating the angular dependence of the linewidth for 

2K2 
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504 G.R.  Luckhurst et al. 

doublet state species [3]. Here it was shown that terms in the summation vanish 
unless q equals q', because the mesophase is cylindrically symmetric, and so 

J0= ~ ( -  1) p+p'+aDt2'~)/~p')* C(22L;OO)C(22L ; q -  q)PL(COSy) 
L;Ia,~' q 

• �89 ~ {'~q, _J~)(0)~q. _p,(2)*(t) - ~ o .  _p<2, ~o,-~'<2)3oq} dt, (24) 
- o o  

where the product of rotation matrices has been replaced with a sum of Legendre 
polynomials by resorting to the Clebsch-Gordan series [12]. The summation 
is restricted to even values of L because of the Doo h symmetry of the environment 
and so the angular dependence of the linewidth is found to be 

T2 -1 - - - - -  X o + X,  e,(cos y) + X 4 P,(cos y). (25) 

To proceed further and obtain explicit expressions for the angular linewidth 
coefficients we shall require some model for the molecular reorientation process. 
Two quite different approaches are available although both find it particularly 
convenient to restrict attention to those spin probes for which the ordering tensor 
~0,p(2) is cylindrically symmetric, that is the only non-vanishing component has 
p = 0. Of course the magnitude of the ordering tensor is determined by the solute- 
solvent interactions and we can only be certain that.~o, p(2)is cylindricallysymmetric 
when the spin probe has the same symmetry. In practice there are few spin 
probes with cylindrical symmetry although this does not guarantee that the 
ordering tensor for the remainder are not cylindrieally symmetric, but now the 
symmetry must be established experimentally. Providing the ordering tensor is 
cylindrically symmetric we may replace ~0,p r in equation (24) for the spectral 
density Jo by P~ 30p and, more importantly, we can eliminate those terms with p 
not equal to p' ; the expression for X L reduces to 

X L  = 3  ~_, ( - 1 ) q J D ( ~ , v ) J 2 C ( 2 2 L ; O O ) C ( 2 2 L ; q - q ) j q _ p ,  (26) 
~, q 

where the spectral densityjq_~ is 

jqm= �89 ~ (~q, _p(z)(0)-@q, p(~)*(t)-Pz230v3oq } dt. (27) 
- - 0 0  

The components of the zero-field splitting tensor must now be expressed in the 
coordinate system which contains the symmetry axis for the ordering tensor as 
one of the axes. There are several variants of the first model which is based 
implicitly on the notion of a strong collision which results in instantaneous 
molecular reorientation through any angle [16]. If, on average, the time between 
reorientational collisions is �9 then the correlation function, which is the integrand 
in equation (27), decays exponentially with a single time constant z ; accordingly 

jq_p = { 2~ ( -- 1)P+qC(22L' ; q -  q)C(22L'; --PP)PL'-  P2230pSOq} ~'' (28) 
L" 

Of course, such an expression does not reflect the moleeular anisotropy aceurately 
since the reorientation process would be expected to be governed by several 
correlation times. In general, therefore, r should depend on both p and q [2] ; 
however, even though this assertion is theoretically reasonable, it is unacceptable 
on practical grounds because it would introduce too many arbitrary parameters. 
Thus it is difficult to relate the various correlation times ,p, q in any rigorous 
fashion although some reduction can be achieved if the eorrelation times are 
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Spin relaxation 505 

assumed to parallel those for a cylindrical symmetric molecule undergoing 
rotational diffusion in an isotropic system. Accordingly zp, q should be indepen- 
dent of q and depend only on the modulus ofp [3] ; taking the assumption further 
the remaining three correlation times rp should be quadratic in p and so related by 

T P - - a =  %-1{4 + ( ~ - 1 )  . (29) 

Such assertions can only be justified by comparison with experiment and at 
present the few results available seem to support these intuitive expressions for 
the spectral densities in anisotropic systems. One of the major advantages of 
this approach is its mathematical simplicity, for example the angular linewidth 
coefficients are readily calculated to be 

X L = ~  ~, (--1)PlD(~'P)12C(22L;OO)C(22L; --pp){PL--P,~3op}rp. (30) 
P 

Evaluation of the Clebsch-Gordan coefficients [12] then gives the explicit 
expressions for X L as 

Xo=(3/lO) {lD(2'~ 21n(2,1)l%'1+ 2[n(~'2)]~'r~} , (31) 

X~= (3/7) {[D(2, ~ -P22)ro-I-I D(2, 1)[$P2T 1 - -  2ID(*, 2)[2P2T2} (32) 
and 

X,=(9/35){31D(~,~ (33) 
As we mentioned in the Introduction, electron spin relaxation for a triplet 

state is identical to nuclear spin relaxation, for a nucleus of spin 1, by the 
quadrupole interaction [17]. Consequently a partial check of equations (31)-(33) 
is possible because Egozy et al. [18] have calculated the deuterium relaxation 
times, T~ and 7"2, for perdeuterated benzene dissolved in a nematic mesophase. 
However, they restrict their attention to the situation when the director is parallel 
to the magnetic field, the field gradient at the deuterium nucleus is cylindrical 
symmetric and the molecular reorientation can be described by a single correlation 
time, as in the simple version of the strong collisional model. If we impose all 
of these restrictions on equations (25) and (31)-(33) then we obtain the secular 
contribution to the linewidth, T~ -1, which has the same form as that found by 
Egozy et al. but which is twice as large. Since our results yield the correct limiting 
value for the secular part of T2 -1 when both the system and the motion is isotropic 
[17] we suppose their equation is in error. 

At the other extreme the molecular reorientation is assumed to proceed via 
small angle jumps, as a consequence the dynamic properties of the system are 
well defined. They are obtained by solving the diffusion equation, for the con- 
ditional probability, after adding terms to allow for the ordering potential provided 
by the anisotropic environment [19]. According to this diffusion model the 
spectral densities at zero frequency are given by [20]. 

iqp = ~, (( - 1)P+qC(2L'L" ; q -  q)C(2L'L" ;p --P)PL"--P~d~L'3Op3oq} rz' ,  q,p. 
L" ~O 

L" (even) (34) 
The times "rL,,qp, which play the same role as the correlation time r in the strong- 
collision model, are determined from the matrix Rqp whoseelements are defined 
by 

RqpL~'= -- (L(L + 1) + (D,,/D• 1)p2}3LL -- { Z )tL" 
L t" 

x {L(L+I) -L ' (L '+I)+L"(L"+I)}C(L"L 'L;Op)C(L"L 'L;Oq) ,  (35) 
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506 G . R .  Luckhurst  et al. 

where D is a cylindrically symmetric  diffusion tensor whose symmetry axis is 
assumed to coincide with that of the ordering tensor. The  parameters A L. are 
the expansion coefficients for the orientational energy of a molecule which is 

U(fl)=kT ~ ALPL(COSfl), (36) 
L (even) 

where fl is the angle between the symmetry axis for the ordering tensor and the 
director. The  (2, L ' )  elements of the inverse matrix Rqp -a are then 

- 5D• + 1), where D• is the component  of the diffusion tensor perpen- 
dicular to the molecular symmetry  axis. The  spectral densities obtained from 
this model obey certain symmetry  rules because of the properties of the Clebsch-  
Gordan coefficients, in fact 

jqp =j_q_p =jq_p =j__q,p. (37) 

We can therefore write the angular linewidth coefficients explicitly as 

X 0 = (3/10) (I/~2, ~ z(j0o + 2jl 0 + 2ja o) + 21/~ ~, 1) 12(]o t + 2jn + 2j21) 

+ 21D(2' ~)[ ~(jo2 + 2J1~ + 2j22)}, (38) 

X 2 = (3/7) ~1D(2, ~ + j l o -  2j2o) + 21Dt2'"[2ffOl + J u  -- 2j2t) 
+ 2] D(~, 2)l 2(jo~ +J12- 2j22)} (39) 

and 
X a = (9/35) (1/~9, o)l ~(3jo ~ _ 43.1o +Jzo) + 21/)(2' 1)12(3joa - 4in +A1) 

+ 21D (2' 2)12(3jo2- 4j12 +Jz2)} �9 (40) 
In the following section we shall compare the predictions of the two dynamical 

models with the angular linewidth coefficients measured for a nitroxide biradical 
dissolved in a nematic mesophase. 

3. COMPARISON WITH EXPERIMENT 

3.1. The experiment 
The  biradical spin probe employed to test the theoretical predictions was 

1,4-bis(3-spiro-[2 'N-oxyl-Y,Ydimethyloxazolidine])  cyclohexane which has the 

o 

o 

O 

""1"""'-..... 
0 z' 

Figure 1. The molecular structure of the biradical spin probe 1,4-bis(3-spiro-[2'N-oxyl- 
3',Y-dimethyloxazolidine]) cyclohexane together with a co-ordinate system in which 
the ordering tensor is supposed to be cylindrically symmetric. 
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Spin relaxation 507 

structure shown in figure 1. The spin probe was synthesized from cyclohexan- 
1,4-dione using the route described by Michon and Rassat [21]. The nematogen, 
4,4'-di-n-butyloxyazoxybenzene, was purchased from Eastman Kodak Ltd. and 
purified by recrystallization from ethanol (Ts_ N 102~ TN_ I 132~ In the 
experiment the orientation of the director is controlled by an electric field, con- 
sequently the sample, made by doping the nematogen with the spin probe, was 
contained in a cell made from two glass plates approximately 1 cm x 10 cm and 
held 125/~m apart with a Teflon spacer. The inner surfaces of the plates were 
coated with tin oxide and this allows the application of an electric field perpen- 
dicular to the surface. In the absence of an electric field the director is aligned 
parallel to the spectrometer's magnetic field; however, the magnetic forces 
responsible for this alignmentare overcome by a 14 kHz electric field from an 
applied voltage of 90 volts. Under these conditions the director is aligned perpen- 
dicular to the electric field and so parallel to the plates of the cell because the aniso- 
tropic permittivity is negative [1]. The only effect of the magnetic field now is to 
constrain the director to lie in the plane containing both the magnetic and electric 

0 ~ 

100 g a u s s  

Figure 2. The electron resonance spectrum of the biradical in the nematic mesophase of 
4,4'-di-n-butyloxyazoxybenzene at 104~ with the director (a) parallel and (b) per- 
pendicular to the magnetic field. 
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508 G.R.  Luckhurst et al. 

fields. The angle y between the director and the magnetic field is then 90 ~ minus 
the angle made by the electric field with the magnetic field. The cell was mounted 
in a goniometer and the angular dependence of the spectrum for the spin probe in 
the nematic mesophase was recorded; the measurements were made at two 
temperatures, 127~ and 104~ Typical spectra are shown in figure 2 for the 
sample at 104~ with the director parallel and perpendicular to the magnetic 
field; these two spectra clearly demonstrate the angular dependence of the line- 
widths and we shall now describe the determination of these widths. 

3.2. Spectral analysis 

The spectra in figure 2 are dominated by the dipolar splitting whose angular 
dependence is predicted by equation (6) ; for those orientations where the dipolar 
splitting is well resolved there is complete agreement between the observed and 
theoretical line separations. The values o f / ) ,  determined from the angular 
dependence for the two temperatures are given in table 2. The spectrum, for the 

Temperature /~,,, J~ll 1 . ~  ]~ n 1/(Au 1 -  f~.l.) 
(~  (MHz) (MHz) (MHz) 

104 ~ 101 29"2 47-2 - 5-6 
127 ~ 64 33-7 44-9 - 5"7 

Table 2. The partially averaged magnetic parameters. 

director orthogonal to the magnetic field, also exhibits hyperfine structure from 
the two equivalent nitrogen nuclei, the spacing between the lines is just one-half 
the nitrogen coupling constant because the electron-electron interaction greatly 
exceeds the hyperfine interaction [22]. For many orientations the hyperfine 
splitting is not resolved but does result in inhomogeneous broadening of the 
spectral lines; consequently it is essential to allow for this broadening when 
obtaining the true linewidth. We have therefore simulated spectra which 
incorporate both the dipolar and hyperfine splittings, the linewidth was then 
varied until agreement with the observed spectrum was obtained. The angular 
dependence of the coupling constant, required in the simulations, is given by [1] 

e (7) = {g,, 2 cos 27 + A~.2 sin s 7} l/g, (41) 

since the anisotropy in the partially averaged g tensor is negligibly small. The 
values of the two components of the partially averaged nitrogen hyperfine tensor 
employed in the spectral simulations are given in table 2. Since a(y) could not 
always be obtained from the spectrum of the biradical we have also measured the 
nitrogen coupling constant of the nitroxide monoradical, which is responsible for 
the central three lines in figure 1 (a). The radical is almost certainly the hydroxyl- 
amine derivative of the biradical formed by hydrogen abstraction from the solvent. 
In view of the great similarity of the structures of mono and biradical we expect 
their partially averaged nitrogen hyperfine tensors to be the same and this is found 
to be so when both splittings can be measured simultaneously. The linewidths 
obtained by matching the theoretical and experimental spectra are plotted against 
the director orientation in figure 3 for the sample at 104~ a similar angular 
dependence was observed at 127~ 
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Figure 3. The angular dependence of the linewidth for the biradical dissolved in the 
nematic mesophase at 104~ The solid line is the best fit to equation (25). 

3.3. T h e  molecular  s y m m e t r y  
The expressions obtained for the angular linewidth coefficients are only 

valid when the ordering tensor ~0. p~2~" for the spin probe is cylindrically symmetric. 
The spin probe employed in the experiments does not possess cylindrical symmetry 
and so we must first show that ~o, o (~ is the only non-zero component of the ordering 
tensor. There are five unknown order parameters, and since there are only two 
independent pieces of experimental information (.~, and D, ) all we can hope to 
achieve is to show that they are consistent with an assumed cylindrical symmetry. 
The spin probe may exist in one of several conformations but solid-state electron 
resonance studies indicate that the equatorial-equatorial chair form of the trans 
isomer, shown in figure 1, is preferred [23]. Examination of molecular models 
then suggests that the ordering tensor for the spin probe in the nematic mesophase 
should be cylindrically symmetric about the z axis shown in figure 1, together 
with a projection formula for the conformer. Provided the assumption of 
cylindrical symmetry is correct then the components of the partially averaged 
tensors are given by 

/5 ~ = (2/3)1/2D(2, ~ 2 (42) 
and 

X,. - ~.L = (3 /2 )  1/2A(2' ~ (43) 

where the zeroth component of the appropriate anisotropic tensor is evaluated in 
the x y z  coordinate system, shown in figure 1. The nitrogen hyperfine tensor, 
for such oxazolidines, is cylindrically symmetric about the x axis [23] and so 

A(g, o) = _ (3]8)1/2A IL ', (44) 

where A, '  is the component of the anisotropic tensor along this symmetry axis. 
The zero-field splitting tensor is, to a good approximation, also cylindrically 
symmetric [21, 23] but about the z' axis which makes an angle 0 with the z axis 
and so 

cos ~ 0 - 1 ) (45) 
D(2. o5 = (3/2)1/2 (3 2 Dz"" 
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510 G . R .  Luckhurst  et al. 

Because the symmetry axes of the two magnetic tensors are not parallel the ratio 
/3~/(Xf~- ~• may only be independent  of temperature if the ordering tensor is 
cylindrically symmetric. The  values calculated for this ratio are essentially 
constant as we can see from the results given in table 2. The  angle 0 can be 
extracted from these values for/3,,/(~,, - ~ •  since, from equations (42)-(45) 

(3 cos~0 - 1) 3/5,, d',f 
= - (46) 

2 4(X,  - 2•  

Calculation of 0 provides us with an additional check on the assumption of 
cylindrical symmetry because this angle may be estimated from molecular models. 
Thus  the z' axis has been found to intersect the N - O  bonds at about one-quarter 
of the bond length from nitrogen [23] and so 0 should be about 20 ~ given our 
assignment of the z axis. Since 8 is relatively small rather precise values of the 
parameters occurring in equation (46) are required to obtain a reliable estimate 
of this angle. �9 The  zero-field splitting tensor is known, with some accuracy, 
from single crystal studies and D~,~, is found to be 230 MHz  [23]. Unfortunately 
the anisotropic hyperfine tensor is not known with such certainty and three 
reasonable values are available. The  single crystal s tudy of the biradicaI yields a 
value for A',  of 52-5 MHz  although the accuracy is said not to be high [23]. 
A more reliable value of 51.1 M H z  has been determined for the structurally 
related monoradical 2-N-oxyl, 1,1,3,3-tetramethyloxazolidine [23]. Finally A'~ 
is 48 .7MHz for another monoradical, (3-spiro-[2'N-oxyl-Y,3'-dimethyloxa- 
zolidine])-5~-androstane-17j%ol [24], which, in view of the cyclic groups, 
should be most closely related to the biradical. The  magnitudes of 0 and/32 
obtained from the single value of D,,,, together with these three values of A" u are 
listed in table 3 for both temperatures. The  angle 0 is seen to range from 8 ~ 
to 15 o even though the component  of the anisotropic hyperfine tensor only changes 
by an amount,  3.8 MHz,  not greatly in excess of the experimental error in _4' ~r. 
In view of this extreme sensitivity of the angle to _4 ~' we believe the results for 0 
are also in accord with the assumption of a cylindrically symmetric ordering 
tensor. In addition we shall take 0 to be 15 ~ in subsequent calculations because 
this value is closest to our original estimate of 20 ~ based on an examination of 
molecular models. 

Temperature (~ 

AII '/MHz 104 ~ 127 ~ 

0 ~ 0 ~ 

52"5 9 ~ 0-46 8 ~ 0"29 
51-1 12 ~ 0-47 11 ~ 0-29 
48"7 15 ~ 0-49 15 ~ 0-31 

Table 3. The derived parameters 0 and if2. 

3.4. The angular linewidth coefficients 
As we have just seen, our assumption of a cylindrically symmetric ordering 

tensor is not unreasonable and so we may now turn to a detailed analysis of the 
linewidths. The  first test of the theory is to see if the angular dependence of the 
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Spin relaxation 511 

linewidths is in accord with that predicted by equation (25). The theoretical 
angular dependence of T2 -1 is shown as the solid line in figure 3 and is seen to be 
in good agreement with experiment; comparable agreement is also found for the 
linewidths measured at 127~ Of course such comparisons do not provide 
a particularly severe test for the theory because the predicted angular dependence 
of the linewidth stems directly from the D~ n symmetry of the anisotropic environ- 
ment and the second rank nature of the zero-field splitting tensor. In fact the 
good agreement between theory and experiment may be taken as confirmation 
of our correct assignment of the dominant spin relaxation process. A more 
searching test of the theory is provided by an attempt to predict the observed 
angular linewidth coefficients XL;  these are listed in table 4 and were obtained 
by fitting equation (25) for 7"2 -1 (7) to the experimental linewidths. There are, 
of course, two theoretical expressions for the coefficients XL and one of the major 
objectives of any experimental linewidth investigation is to distinguish between 
the two extreme models for molecular reorientation. However, in this study we 
shall be primarily concerned with using the experimental results, which are not of 
high accuracy, simply to illustrate the theory. 

Temperature X o X 2 X4 Xo/X2 Xo/X,  
(~ (MHz) (MHz) (MHz) 

104 ~ 31"4+0"5 16+1 -26+1  2-0+0"2 -1-21+0'07 
127 ~ 29"5+0"9 9+2 - 1 4 + 2  3"3+0"8 -2"1+0"4 

Table 4. The angular linewidth coefficients. 

We now proceed to calculate the angular linewidth coefficients using both 
models. To make the comparison with experiment as equitable as possible the 
ordering potential, given in equation (36), will be restricted to just the first term, 
i.e. 

U 
k--T = A2P2(c~ fl)' (47) 

in both calculations. The magnitude of the single parameter h s may then be 
calculated from the observed value of the order parameter P~ ; the results of this 
calculation are listed in table 5. Because the potential is restricted to a single 
term both dynamic models lead to sets of equations for X L which contain just 
two arbitrary parameters. In addition the ratios X o / X  2 and X o / X  4 of the angular 
linewidth coefficients are seen to depend on the ratio of the appropriate parameters ; 
in the case of the strong-collision model this is z0/r2 while for the diffusion model 
it is DjI/D • 

Temperature P2 if4 ~'~ 
(~ 

104 ~ 0"49 0"16 -2"3 
127 ~ 0"31 0"06 - 1"4 

Table 5. The order parameters. 
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512 G .R .  Luckhurst et al. 

We begin with the strong-collision model; the evaluation of the linewidth 
coefficients requires the order parameter P4 and this was calculated from the values 
for A s with the results given in table 5. This procedure contrasts with previous 
linewidth studies employing doublet states where the angular linewidth 
coefficients were employed to determine/~4 [3, 4, 7]. The components of the 
zero-field splitting tensor in the principal coordinate system, xyz, for the ordering 
tensor were found to be 

and 

D~S, o5 = 252 MHz, 

Dr2, • 85 MHz 

/Ts. ~s)= 12 MHz. 

(48) 

The two ratios of the linewidth coefficients, X o / X  2 and X o / X  4, were calculated 
from equations (31)-(33) for a wide range of values of the relative correlation time 
%/r2 in an attempt to find agreement with experiment. However, both X o / X  s 
and X o / X  4 proved to be virtually independent of ro/r s and it was not possible to 
fit the experimental results. For example, at 104~ where the experimental 
data are most reliable, X o / X  s was predicted to change only from 2.3 to 2.2 when 
To/r 2 was varied from 1 to 8. This prediction is in reasonable agreement with 
experiment, but, in marked contrast, X o / X  4 is calculated to be -3 .7 ,  which is 
over three times the observed value. It is, of course, possible to force agreement 
with the experimental value of X o / X  4 by changing the magnitude of the order 
parameter/34, since this affects just the X 4 angular linewidth coefficient. Agree- 
ment can only be achieved when P4 is virtually zero ; a result which is in accord 
with small values of P4 determined by Raman studies [25]. However, we suspect 
that the value is unreasonably small in view of the success of the single parameter 
potential in linewidth investigations employing doublet state spin probes [3, 4, 7]. 
The analysis of the angular linewidth coefficients obtained for the biradical at 
127~ yielded similar discrepancies between theory and experiment. 

The angular linewidth coefficients were also evaluated using the diffusion 
model ; again the ordering potential was restricted to a single term with ~2 taking 
the values given in table 5. For these relatively low values of A s it was found to be 
adequate to truncate the series expansion of the spectral density in equation (34) 
after L" = 20 ; consequently the matrix Rpq was restricted to a maximum dimension 
of 20. The relative linewidth coefficients were obtained for various values of 
D I/D E and although the results were not particularly sensitive to D I~/D l it did 
prove possible to obtain the ratios X o / X  2 and X o / X  4 in fair, but not complete, 
agreement with experiment. The best fit was found for a range of values for 
Djj/D• and these are listed in table 6, together with the predicted linewidth ratios. 
As we expect the agreement between theory and experiment is best for the more 
accurate angular linewidth coefficients measured at 104~ The agreement 
for the less accurate results at 127 ~ is not so impressive although still an improve- 
ment on the predictions of the strong-collisional model. The ratio D~/D• for the 
components of the diffusion tensor is independent of temperature as we might 
anticipate [4]. We can estimate this ratio in the hydrodynamic limit if the 
molecular dimensions are known [4, 26] ; using molecular models we gauge the 
major semi axis to be 12A while the minor semi axis is about 4.5 A. The hydro- 
dynamic value of D H/1)1 is then found to be 2.7, which is about twice as large as 
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Spin relaxation 513 

Temperature D,,/Dj. Xo/X, Xo/X, 1), 
(~ (Mrads -1) 

1 - 2  1 "8 - 1-4 600 
104 ~ 1 " 4  1"8 - 1"5 520 

1 "6 1 - 8  - 1 "6 540 
1 "2 2"3 - 3"4 720 

127 ~ 1 "4 2"3 - 3"6 700 
1 "6 2"3 - 3-8 680 

Table 6. The diffusion model predictions. 

the experimental value. It is surprising to find a value below the hydrodynamic 
limit because similar studies of doublet-state spin probes have yielded value in 
excess of this limit [4-6]. Indeed, for these systems it proved necessary to intro- 
duce an anisotropic interaction tensor K (4) whose magnitude is related 
to the anisotropy in the intermolecular potential [27] to account for the deviations 
from the hydrodynamic limit. Of course analogous explanations cannot be in- 
voked, for rod-like molecules, when the ratio D,r/D • is less than the hydro- 
dynamic limit [4]. 

The diffusion model of molecular reorientation in an anisotropic medium 
provides an adequate description of the angular linewidth coefficients, even 
though the ordering potential is restricted to a single term. This limited success 
contrasts with the apparent failure of the strong collision model which is only 
able to predict the ratio Xo/X~ when the ordering potential contains a single term. 
In the anisotropic system which we have studied the molecular reorientation 
would appear to occur via rotational diffusion although more precise results will 
be required before we can differentiate with complete certainty between the two 
models. 

4. ADDITIONAL SPECTRAL FEATURES 
When the director is orthogonal to the magnetic field the five nitrogen hyper- 

fine lines associated with either component of the dipolar doublet are well resolved. 
Close inspection of the appropriate spectrum, shown in figure 2, reveals a minor 
variation in the widths of the hyperfine lines. Such asymmetric line broadening 
cannot be accounted for by the theory which we have just developed because the 
anisotropic hyperfine interaction was specifically excluded from the dynamic 
perturbation. However quite straightforward arguments [28] show that this line 
broadening can be explained by inclusion of the hyperfine term in ~ ' ( t ) ,  the 
asymmetric linewidth effect then originates from the cross term between the 
anisotropic hyperfine interaction and the zero-field splitting tensor. We do not 
feel impelled to make a more detailed analysis because this broadening is quite 
secondary to the other linewidth variation which we have observed. 

The spectral line shape is expected to be symmetric about the base line but 
examination of the spectrum for the director parallel to the magnetic field shows 
that this is not the case. Similar asymmetry in the line shape has been observed 
for doublet-state spin probes dissolved in liquid crystals and has been attributed 
to non-uniform alignment of the director, probably caused by thermal fluctuations 
[29]. A slight departure from uniform alignment of the director would also be 
expected to produce asymmetric line shapes for biradical spin probes and we have 
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514 G.R .  Luckhurst et al. 

used spectral simulations to confirm this expectation. Of course we also expect the 
line shape to become asymmetric when the rate of molecular rotation is comparable 
to the inverse of the zero-field splitting [30]. Unfortunately it is difficult to devise 
experiments to distinguish between these two possible explanations of asymmetric 
line shapes. However, the rate of motion may be obtained from the inverse of the 
diffusion tensor ; from the values listed in table 6 we can see that the ratio of the 
zero-field splitting to either component of the diffusion tensor is just less than 
unity. Accordingly the assumption of rapid motion should be valid for this 
system and the asymmetric line shape presumably originates for non-uniform 
alignment of the director. 

5. QUADRUPOLE RELAXATION 

The problem which we have just solved is formally identical to the calculation 
of the spin relaxation times, for a nucleus of spin 1, caused by a quadrupole inter- 
action coupled to the molecular reorientation. Consequently our results could 
be of value in understanding the spin relaxation behaviour of nuclei, such as 
deuterium, when they are incorporated in molecules forming part of a liquid 
crystalline system. However, some caution must be exercised in the application of 
these results. For example, although the neglect of the non-secular terms in the 
dynamic perturbation is a good approximation for electron resonance spectroscopy 
such an assumption may not be valid for nuclear magnetic resonance where the 
operating frequency is much smaller. If the non-secular terms do have to be 
retained then the entire lineshape will have to be calculated from equation (19) 
and a simple analysis is only possible when the lines are well resolved or the 
transitions are completely degenerate. In addition our assignment of the dominant 
process responsible for changes in the molecular orientation may be quite irrelevant 
for nuclear magnetic resonance. This situation obtains because the quadrupole 
interaction is considerably smaller than the zero-field splitting and so the motion 
with respect to the director, which we have considered, is too fast to make a 
significant contribution to the nuclear spin relaxation times [31]. However, the 
molecular orientation is also changed by thermal fluctuations in the director 
and although this motion is slow on the electron resonance time scale it is 
sufficiently fast to influence the relaxation times in nuclear magnetic resonance 
[32]. Consequently the spectral densities employed in this paper would be 
inappropriate for calculating the deuteron relaxation times ; it is however straight- 
forward to obtain the relevant spectral densities from continuum theory [32, 33]. 
The calculation of the spin lattice relaxation time T 1 also presents certain 
difficulties especially when the two transitions are nearly degenerate. Indeed the 
general angular dependence of T 1 is complicated even when the spectral lines are 
well resolved and we shall not discuss this aspect of the problem here. 
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Yeates for providing a comforting check of the programmes employed in 
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