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Abstract 

Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the 

prion protein (PrPC) into a pathogenic and protease-resistant isoform PrPSc. PrPC is a cell surface 

glycoprotein expressed mainly in the central nervous system and despite numerous efforts to 

elucidate its physiological role, the exact biological function remains unknown. Many lines of 

evidences indicate that prion is a copper binding protein and thus involved in the copper 

metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, 

reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in 

mammals while they seem to be spared to other species. The chicken prion protein (chPrPC) shares 

about 30% of identity in its primary sequence with mammal PrPC. Both types of proteins have an 

N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, 

PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR 

studies have highlighted a similar globular domain containing three α-helices, one short 310-helix 

and a short antiparallel β-sheet. Despite this structural similarity, it should be noted that the normal 

isoform of mammalian PrPC is totally degraded by proteinase K, while avian PrPC is not, thereby 

producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the 

hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the 

analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper 

binding sites, the affinity and the coordination environment of metal ions are still matter of 

discussion for both mammal and avian proteins.  

In this review, we summarize the similarities and the differences between mammalian and avian 

prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, 

using a range of experimental and computational approaches. In addition, we report the metal-

driven conformational alteration, copper binding modes and the superoxide dismutase-like (SOD-

like) activity of the related copper(II) complexes.  
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1. Neurodegeneration, environment and metal complex species 

A broad range of human diseases are associated with the conversion of a particular protein or 

peptide, from a normally soluble form to insoluble and well-defined fibrillar aggregates, known as 

amyloids [1-5]. Although the molecular mechanisms by which the pathologies develop may be 

different, for this common hallmark these pathologies are generally named protein misfolding 

diseases [6-10]. Among these there are different neurodegenerative disorders such as Alzheimer's 

disease (AD), Parkinson’s disease, amyotrophic lateral schlerosis (ALS), Huntington’s disease, and 

the transmissible spongiform encephalopathies (prion diseases) [11-18]. 

Many of these diseases exist as sporadic and inherited illnesses. For example, less than 1% of cases 

affected by AD are younger than 60 years old, but patients with early onset or presenile AD often 

have a positive family history, probably linked to mutations in genes for amyloid precursor protein 

(APP), presenelin 1 and presenelin 2, which affect the stability and metabolism of β-amyloid [19]. 

Actually the late-onset or senile Alzheimer's disease accounts for 95% of all Alzheimer's disease 

cases [20]. 

Within human prion diseases, sporadic Creutzfeldt-Jakob disease (sCJD) includes 85% of all cases 

of these pathologies [21]. Only 15% are inherited such as Gerstmann-Sträussler-Scheinker (GSS) or 

inherited forms of Creutzfeldt-Jakob disease (CJD), in which a point mutation in PrPC results in an 

increase of the protein propensity to assume an abnormal conformation [22, 23]. However, in recent 

years the variant CJD (v-CJD), a prion disease supposed to be caused by transmission of bovine 

spongiform encephalopathy (BSE), appeared [24]. The majority of prion diseases affecting animals 

such as the BSE of cattle, scrapie of sheep and chronic wasting disease of elk and deer (CWD) are 

believed to be acquired through an alimentary route (BSE) or by horizontal transmission (CWD) 

between affected animals [25]. 

Taking into account the higher percentage of sporadic causes of these disorders, great efforts have 

been made in understanding what environment modifications and risk factors may be the cause of 
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protein misfolding [26]. In this regard, it has been proposed that the conversion likely occurs in the 

partially denaturing environment of endocytic compartment, where the lower pH may induce 

conformational changes that facilitate amyloid and prion self-assembly [27-29]. In general, pH, 

temperature, ionic strength, presence of chaotropic agents, oxidative stress and metal ions strongly 

influence the conformation adopted by the polypeptide [29-34]. 

Nowadays it is widely accepted that toxic aggregates are the soluble oligomers, intermediate species 

between monomers and amyloid fibrils [6, 35-37]. These oligomers can display different 

morphologies resulting in their different toxicity. The morphological variability is associated with 

various environmental conditions such as different interactions with metal ions [37-39].  

Metal ions can be broadly classified as either “biometals” or “toxicological” metals based on 

whether they have a functional role or are detrimental to the organism. Transition metals such as 

iron, zinc and copper are present in the brain at concentrations ranging from 100-1000 µM, and 

dysfunction in homeostasis of these endogenous transition metals can result in significant 

neurological abnormalities [40-42]. In normal mice, age-related increases in copper (46% from 2.8 

to 18 months), iron (51% from 2.8 to 18 months) and cobalt (66% from 2.8 to 18 months) levels in 

whole brain have demonstrated [43,44]. Other metals such as zinc and manganese did not change 

[45, 46]. 

Since age is one of the major risk factor for neurodegenerative diseases, alterations in the 

distribution or levels of metal ions with age might be important in the underlying disease 

pathogenesis. Actually, elevations (3-5 fold increase in the cortical and accessory basal nuclei of the 

amigdala) in zinc, copper and iron in the neuropil of AD patients, as compared to age-matched 

controls, have been reported [47]. Metal concentrations are significantly increased specifically 

within Aβ plaques with copper (390 µM), zinc (1055 µM) and iron (940 µM) all elevated (although 

iron is found primarily complexed with ferritin in plaque-associated neuritic processes and within 
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neurons and NFTs) as compared to the normal age-mathched neuropil (Copper (70 µM), Zinc (350 

µM) and Iron (340 µM)) [46,47]. 

Human beta-amyloid peptides are able to bind metal ions such as copper, zinc and iron, and a redox 

chemistry-based pathogenic model of neurodegenerative diseases has been proposed [48]. Rat Aβ-

28 differs from human Aβ by three mutated residues, with Arg5, Tyr10, and His13 of human Aβ 

substituted by Gly5, Phe10, and Arg13 [49]. It has been shown that, in vitro, rat Aβ binds transient 

metals weakly, unlike human Aβ [48, 50, 51]. In this case the coordination of Cu2+ or Fe3+ does not 

induce redox chemical reactions, thus reducing the amount of reactive oxygen species generated 

[46,48]. This could explain the resistance in mice to develop Alzheimer's disease despite the high 

sequence identity (97%) of mouse Aβ to its human homologue [49, 52]. According to this 

pathogenic model, the lack of these key residues of mouse Aβ, compared with the human 

counterpart, results in different metal ions coordination; it may explain why mice do not suffer from 

AD. 

From a chemical point of view, a metal can be bound to a specific protein binding site but, 

depending on pH, concentration of metals and metal to ligand ratios, different complex species can 

form with different coordination environments. This could explain also the contradictory data 

reported for the role of the metal ions in different neurodegenerative diseases. Therefore, it appears 

necessary to obtain data on copper ions binding, complex species, affinity and coordination mode, 

in order to have valuable grounding to explain the so-called “metal paradox”. 

As shown in the previous example of rat and human Aβ, a useful approach consists in making 

comparative studies on proteins and peptides of different organisms. This approach allows us also 

to obtain information on the possible biological role of the proteins. Currently another common 

aspect of several proteins or peptides involved in such diseases is that their biological function 

remains unknown.  
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PrPC is a highly conserved protein in mammals, but genes encoding homologous prion proteins 

have been reported in different species such as avians/birds, turtles, amphibians and fish [53-59]. It 

is important to point out that prion diseases are observed only in mammals, appearing to be 

precluded to the other species. Thus the comparison between prion proteins of different species can 

reveal functional evolutionary trends related to certain aspects of prion pathogenesis.  

In this review we deal with the different behaviour of avian and mammal prion protein, also 

reporting our latest data on SOD-like activity of N-terminal repeats region, which is useful in 

settling some of the disputed functions of the prion protein. 

 

2. The prion protein and its role on the cellular metabolism 

Prion protein (PrPC) is a ubiquitous anchored cell surface glycoprotein, mainly expressed in the 

central nervous system [60-62].  

The conversion of normal, soluble α-helix rich protein into insoluble β-sheet enriched pathogenic 

conformer (PrPSc), is thought to be the central event of prion disease [18, 19, 63, 64]. Despite 

uncertainties about the transmission of the disease, there is strong evidence that normal prion 

expression and the Scrapie isoform conversion are essential for the neurodegeneration. In fact, it has 

been observed that mice with knockout neurons for the PrPC gene are resistant to PrPSc 

neurotoxicity, despite being more exposed to oxidative stress [65, 66]. Notably, the two prion 

isoforms show some intriguing features. It was observed, in fact, that while PrPC is entirely 

degraded by proteases, PrPSc is degraded into a stable fragment [67]. Therefore, the protein can be 

incorporated into an aggregate, growing up continuously forming plaques, like the amyloids, in the 

infected brain. 

Although the physiological role of the prion protein is still an open question, it has been suggested 

that PrPC is involved in oxidative stress protection [68], in apoptosis [69], in cellular signalling [70], 

in membrane excitability and synaptic transmission [71], in transport and copper metabolism [72], 
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but it is still unclear how these functions can be all carried out by the same protein. The PrPC was 

found on the cellular surface and it is believed that the endocytosis may influence its physiological 

function, although the mechanism of prion endocytosis is not, so far, clear [73].  

 

3. The avian prion and its difference from mammal analogue 

The chicken prion protein (chPrPC) was the first non mammalian prion protein isolated and 

characterized, being initially described as having acetylcholine receptor-inducing activity [55]. The 

analysis of 27 mammalian and 9 avian PrPs revealed high conservation of the flexible regions of 

prion proteins, encompassing the N-terminal part characterized by the presence of peptide repeats 

[53].  

Interestingly, even if the presence of internal repeats occur in 14% of all known proteins, eukaryotic 

proteins are three times more likely to have these repeats than prokaryotic ones. It has been 

proposed that proteins containing repetitive sequences may evolve more quickly, allowing them a 

faster adaptation to new environments [74]. From fish to humans, the repeat units within one 

molecule show reduced degeneracy, but their size increase reaching a maximum of eight amino 

acids in mammals (see Fig. (1)). 

Despite the divergence between the primary sequences, the comparison among prions from 

different species shows the presence of some conserved protein domain structures [75]. NMR 

measurements have established the structure of mammal, chicken, turtle and frog prion proteins, 

showing closely similar global folds. The C-terminal domain contains three α-helices, one short 310-

helix and a short antiparallel β-sheet, while the N-terminal domain is supposed to be flexible and 

unordered [75]. 

In chicken prion proteins many mammalian prion essential features are observed (see Fig. (2)). In 

particular both proteins possess: i) multiple N-glycosylated sites; ii) an amino-terminal signal 

sequence that is removed in the mature protein; iii) a carboxy-terminal signal that is eliminated 
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when the mature protein is linked to Glycosyl Phosphatidyl Inositol (GPI), and iv) an N-terminal 

domain featured by tandem amino acid repeats, octameric in mammalian prion, and hexameric in 

the avian one, with the following sequences (PHGGGWGQ) and (PHNPGY) for mammal and 

avian, respectively.  

The N-terminal region, made up of polypeptide repeats, has been analyzed by proteolysis [76]. 

Differently from mammalian homologues, the digestion of chicken prion protein with trypsine or 

proteinase K, produces peptide fragments stable to further proteolysis [76], suggesting that they 

adopt a different structure than that of mammalian prion tandem repeats. 

A closer examination of the avian hexarepeats reveals the presence of PXXP motif, known to 

interact with SH3 domains present in different proteins [77]. Another PXXP motif has been 

identified within the N-terminal region of mammalian as well as avian prion proteins and it 

corresponds to region 101-104 in mouse PrPC and 107-111 in chicken PrPC [78]. It has been 

supposed that these sequences may be the recognition sites of the C-terminal SH3 domain of the 

murine growth factor receptor-bound protein 2 (Grb2), suggesting a role in signal transduction for 

the prion protein of different species [78]. 

Other experimental studies indicate that the N-terminal region of PrPC plays a regulatory role in the 

PrPC-PrPSc conversion [79, 80]. Furthermore, the N-terminal domain of chicken prion protein is 

essential for anterograde axonal transport [81] and has been described to drive also clathrin-coated 

pit endocytosis [82], probably due to the abundance of glycines, prolines and the formation of turn 

motifs. Recent NMR and simulation studies gave support to this hypothesis showing the abundance 

of turn structures inside the chicken hexarepeat domain [83, 84], which can lower the flexibility of 

the avian hexarepeats. In particular, a type I β-turn structure was found in the NPGY region [83], a 

conformation adopted also by the NPXY internalization signal of the low-density lipoprotein (LDL) 

receptor [85]; tyrosine-containing motifs, essential for coated pit-mediated endocytosis, have been 

found to adopt an i-i+3 turn conformation [86]. Moreover, an interesting dependence of the peptide 
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shape on the tyrosine residue deprotonation was also detected; the deprotonation causes a 

shortening of the distance between the phenolate oxygen of tyrosine and the amide side chain 

hydrogens of asparagine thus tilting the glycine residue. This appears to be the driving force for the 

increase of unordered structures at basic pH explaining the relative blue shift in the CD spectra 

found in a previous study [87].  

    The analysis of the more extended hexarepeat domain, (PHNPGY)4, from CD and molecular 

dynamics simulations [84], reveals a conformational dependence on the protonation states of 

histidine and tyrosine residues (Fig. (3)).  

In particular, the turn formation is pH driven and the pivotal role of histidine and tyrosine residues 

is observed. These residues are able to stabilize turn regions in the peptide chain, giving rise to a 

very compact bent structure of backbone, upon forming a hydrogen bond. This condition occurs at 

physiological pH, when histidine 8 is deprotonated and tyrosine 18 is protonated. 

The differences found on secondary structures between the chicken and mammalian tandem, can be 

associated to the different ratio between Gly and Pro residues. The mammalian octarepeat peptides 

contain 50% of glycine and 12% of proline residues, respectively, while the chicken hexarepeats 

encompass 16% of glycine and 33% of proline residues. The greater flexibility conferred by glycine 

residues might explain why the mammalian prion protein N-terminal tandem amino acid repeats is 

unordered. On the contrary the high number of proline residues can explain the tendency of avian 

hexarepeats to form turn structure. Moreover, tyrosine residues, stabilizing turn structure, introduce 

another important difference between mammalian prion protein and that of avians, reptiles and 

amphibians. The non mammalian proteins display the conserved sequence PXYP in the repeats 

region [88], whereas mammal octarepeat not only has no PXXP motif but it is also lacking in 

tyrosine residues, essential, as above reported, for coated pit-mediated endocytosis [86]. 

These data on N-terminal domain peptide fragments provide useful information and indications to a 

better understanding of the entire protein structure. 
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Molecular dynamics simulations of the globular core of two mammalian and two non mammalian 

prions, respectively human, Syrian hamster, chicken and turtle, underlined that a higher mechanical 

force is necessary to unfold mammalian prions [89], but another MD simulation showed the same 

thermostability for human and chicken prion proteins [90]. Interestingly, the structural role played 

by water molecules was analyzed by a molecular dynamics approach [91], highlighting that the 

bound and buried water that stabilizes a β-bulge between one edge of the sheet and helix 3, could 

prevent the avian PrPC aggregation. This finding was also supported by a 130 ns long molecular 

dynamics simulation of the full avian prion protein chPrP1-267, which finds again the latter bulge 

and a water molecule tightly bound to the Valine 168 [92]. Moreover, a rigid domain in the 

hexarepeat region was found, revealing a hydrogen bond mainly between the imidazole nitrogen of 

histidine 72 and the phenolic hydrogen of tyrosine 64, found also in the tetra-hexarepeat fragment 

[84]. In addition, the α-helix 2 of the chPrPC was found to be rigid, while the corresponding α-helix 

2 of the human PrPC was reported to be rather flexible [93, 94]. Such latter stiffness is also 

connected to the presence of the first proline, which, being in the first position, protects the helix 

from non-native interaction [95]. Moreover, β-sheet was found to be stable during dynamics, while 

in the mouse prion D178N pathogenic mutant, the β-sheet structure undergoes disruption [96].  

   All these results reinforce the hypothesis that the chicken prion protein possessing more rigid 

domains than those of mammal analogues tends to prevent aggregation, which may in turn be the 

cause for its high resistance to proteases at physiological pH.   

 

4. Prion and copper 

Copper is an essential element for living systems, being a cofactor for many key enzymes that 

catalyze redox reactions [97-99] but, at the same time, the  redox cycling between Cu(II) and Cu(I) 

oxidation states, may be harmful for the formation of radicals such as reactive oxygen species 

(ROS). These highly reactive radicals can determine oxidative damage to cellular components, and 
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these processes have been also related, directly or indirectly, to protein misfolding diseases [100-

103].  Copper ions have been reported to alter the biochemical properties of cellular prion proteins 

and to promote aggregation [104-107]. On the other hand, much experimental evidence suggests 

that mammalian PrPC is a copper-binding protein and that its biological role is strictly connected 

with copper homeostasis [108,109]. 

Brain extracts from PrP-knockout mice have copper content lower than wild type [72]. Noteworthy, 

within the central nervous system, PrPC is concentrated at presynaptic membranes a region of high 

copper localization and flux [71, 109]. All these studies suggest that prion protein may act as a 

receptor for cellular uptake or efflux of copper ions by cells [110]. Actually, micromolar 

concentrations of copper rapidly stimulate endocytosis of cell-surface mammalian PrP, via clathrin-

coated pit [111,112]. Interestingly, the first evidence about copper, prion and endocytosis was 

reported on chicken prion protein [113]. It has been supposed that the binding of copper(II) ion to 

the chPrPC induces a change in conformation, but how this could be a signal for the internalization 

is unclear [113]. 

PrPC expression and the amount of copper content bound to it increase the cellular resistance to 

oxidative stress. The protein may act as a copper chelating agent, when extracellular copper reaches 

high concentrations peaks (15-300 µM) e.g. during synaptic transmission and depolarization [110]. 

Another hypothesis is that the binding of copper to prion could act directly to detoxify oxygen 

reactive species, performing superoxide dismutase-like activity (SOD-like) [114-116]; the SOD-like 

activity appears to be a general property of PrPC since it is displayed by both mouse and chicken 

prion proteins [115]. It has been established that copper binding to the octarepeat is necessary for 

the observed SOD-like activity of mammalian prion protein, therefore it has been postulated that the 

same can be occurring for the corresponding chicken hexarepeat region [115]. 

In general, many studies and efforts have been dedicated to understanding copper interaction with 

mammal PrPC and less for prion expressed in other species. 
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The first measurements on the copper(II) specificity of peptide fragments belonging to the N-

terminal chicken prion domain, was carried out by means of MALDI TOF MS and CD [117,118]. 

Marcotte and Heisenberg ruled out the ability of chicken prion protein to bind copper ions, although 

copper(II) addition strongly destabilized PrPC structure as indicated by the lowering of the melting 

temperature [76]. Just the observed destabilization would result from the metal binding to the 

unfolded form of the prion protein. 

In light of these information, comparative studies on copper(II) binding sites and coordination 

environment with chicken PrPC may be useful in understanding the potential biological role 

associated to copper interactions with the protein.  

 

4.1 Prion and copper(II) coordination features: mammal vs avian 

It is widely accepted that in mammalian protein the main domain for the copper binding is the N-

terminal region, and namely that encompassing the tetraoctarepeats (amino acid residues 60-91) 

[119-123]. This region can bind from one up to four copper ions, while a fifth binding site has been 

located within residues 91-111 even if conflicting results have been reported for copper(II) binding 

features in this region [124-127].  

Studies carried out on peptide fragments allowed us to obtain more detailed information on the 

copper(II) coordination environment. 

The histidine-containing octarepeats bind copper(II) at physiological pH with three different 

coordination modes, depending on the copper peptide molar ratio [128]. At substoichiometric 

copper(II) concentration, the predominant species consists of three or four imidazole nitrogen atoms 

bound to the metal center. Increasing the copper amount, the copper(II) is bound to each octa-repeat 

by means of one imidazole nitrogen, two amide nitrogens from the two glycine residues and one 

carbonyl oxygen [128-130]. These copper(II) complex species have different Kd values, showing a 

negative cooperative effect [131]. The affinity for the copper decreases as a function of increasing 
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metal ion concentration, starting from a Kd of 0.12 nM, when only one copper ion is bound to the 

tetraoctarepeat, to a Kd of 7-12 µM when the same peptide binds four copper ions [130]. These data 

suggest that PrPC function related with copper ion can change as a function of extracellular copper 

levels. 

Differently from mammalian prion proteins, no detailed results have been reported, as far as we 

know, for the entire chicken prion protein. However, studies have been carried out on peptide 

fragments encompassing the hexarepeat region [87,132-134] and the sequence encompassing 

fragments 119-139, which is the well-conserved part corresponding to the neurotoxic 106-126 

region of mammalian protein [135-136]. 

Although it has been reported that the tetrahexarepeat peptide can bind up to four copper atoms, 

being in this similar to human PrPC even if with a lower affinity [133], other results questioned this 

finding [87, 132, 137]. UV-vis and CD studies carried out on chicken hexameric peptide fragments 

containing two histidine residues indicate that this peptide binds only one copper(II), evidencing the 

significant role of Gly residues in copper coordination for the mammalian octameric region [132]. 

X-ray absorption spectroscopy analyses have been performed on Cu(II) complexes with the 

corresponding repeat sequences of both mammal and avian prion protein at pH 6.5 [137]. The 

results confirm that single hexarepeat of chicken display a copper(II) coordination environment 

different from the mammalian octarepeat; avian prion tetrahexapeptide fragments show the same 

coordination features of mammalian tetraoctarepeats only in the presence of a sub-stoichiometric 

amount of copper ions [137]. 

The most important difference in copper(II) coordination can be assigned to the role played by the 

higher number of proline residues in chicken hexarepeats. 

Comparative analysis carried out on copper(II) complex species formed by different hexapeptide 

sequences PHNPGY, HNPGYP and NPGYPH, reveal a different behaviour with respect to an 

octarepeat sequence [87]. There is no formation of an analogous CuLH-2 species in which the 
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copper ion is involved in a 3N1O coordination environment. Clearly the proline residues 

encompassed in the sequence act as break-points in the metal coordination [138]. 

At physiological pH, the peptide fragments containing two hexarepeats (PHNPGY)2 show the 

tendency to bind copper through an inter-repeat mode with the involvement of two imidazole 

nitrogens (Fig. (4a)). 

Interestingly the bishexarepeat binds one copper ion more tightly than the corresponding human 

(PHGGGWQG)2 peptide. This finding is in agreement with the lesser number of residues involved 

in the avian macrochelate complexes and with the greater number of proline residues.  

On increasing the copper(II) equivalents, the (PHNPGY)2 peptide is able to bind two copper ions in 

an intra-repeat mode but with the direct involvement of phenolic group of tyrosine side chain (Fig. 

(4b)). This is indicated by the appearance of a charge transfer (CT) band around 390 nm in the UV-

vis and CD spectra, that can be assigned to TyrO- → Cu(II) ligand-metal transition. Moreover the 

CT band is not observed in the copper(II) complexes with analogous peptides in which tyrosine 

residues have been substituted by phenylalanine [87]. 

It is also interesting to note that the involvement of tyrosine in copper binding has been invoked for 

the copper coordination with Aβ and this has been related also with the formation of tyrosine cross-

linking and consequently with the starting of aggregation processes [139]. 

The study of copper interaction with the tetrahexarepeat (PHNPGY)4 confirms the difference with 

mammalian (PHGGGWGQ)4 [140, 141]. Differently from that reported for the human 

(PHGGGWQG)4, the copper(II) complex species of chicken (PHNPGY)4, where the copper ion is 

bound to four imidazole nitrogens, results predominant in a wide range of pH; this occurs when 

copper to ligand ratio increases and not only with sub-stoichiometric amount of metal. Such a 

copper(II) complex species with the avian tetrahexapeptide shows the same stability constant value 

of the analogous complex with mammalian tetraoctarepeat [140, 141]; similar hamiltonian 

parameters for the two metal complexes have also been found [140, 128]. These magnetic 
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parameters indicate that the four imidazole nitrogen atoms are in a planar arrangement, forming a 

macrochelate (Fig. (5)).  

The (PHNPGY)4 is able to bind no more than two copper ions and always with the involvement of 

tyrosine side chain [140]. The addition of more than two equivalents of copper ions favours 

precipitation phenomena as reported for the entire protein. 

 

4.2 Copper binding sites outside the repeat region 

Substantial evidence suggests the presence of a fifth copper(II) binding site outside the octameric 

region of mammal PrPC [124-127]. Two histidine residues have been considered the potential 

anchoring site His96 and His111. Even if contrasting results have been reported, the His111 appears 

to be the most likely site, displaying a high affinity for the copper(II) [126-127]. The His111 is 

included in the neurotoxic region 106-126 which is considered critical for the conformational 

transition for PrPC→PrPSc [142]. Copper binding to this region has been shown to promote β-sheet 

formation and to enhance its neurotoxicity [143-146]. 

Interestingly, this region is perfectly conserved in avian prion protein (see Fig. (1)). 

The comparison between human and chicken peptide fragments showed similar coordination 

features. The only remarkable difference is due to a slight contribution of Met sulphur atom for the 

species 3N1O in which copper is bound to histidine imidazole and two amides of His and Lys 

residues [135]. The copper(II) coordination to chicken peptide induces the same conformational 

effects observed in human peptide. The metal ion drives a change from a random coil towards a 

structured bent conformation, an effect not observed on analogous scrambled peptide with a 

different primary sequence [135]. 

Notwithstanding this, no studies have been carried out both on the potential neurotoxicity of 

chicken 119-139 peptide and on whether this can be affected by metal ions binding as reported for 

the mammal species. 
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 4.3 The SOD-like activity of copper(II) bound to PrPC N-terminal region 

As reported above there is a lot of evidence to support a direct SOD-like activity of prion protein. 

However, the SOD activity of recombinant PrPC protein, measured by means of indirect methods, 

resulted significantly less than that of native cytosolic Cu-Zn Superoxide Dismutase enzyme (SOD-

1), amounting to 30% and 15% for mouse and chicken PrPC, respectively [115]. 

The zinc ion, which has a structural role in the Cu-Zn SOD, does not seem to be involved in the 

prion SOD-like function because the refolding in presence of both copper and zinc does not show 

any increase of SOD activity, although a recent paper indicates that zinc ion regulates the copper 

coordination in the octa-repeat region [147].  

The prion SOD-like function in mammals is supported by the fact that in the synapses, where the 

concentration of PrPC is very high, the presence of Cu-Zn SOD was not observed, therefore PrPC 

may be the main, if not the only protein capable to carry on SOD-like activity. Moreover, prion 

protein-deficient cells show altered response to oxidative stress due to the decrease of SOD-1 

activity [148], and immunodepletion of PrPC from the brain extracts involves a reduction of SOD-1 

activity within the extract [116]. 

In this context, conformational change caused by the binding of copper(II) to the PrPC could be a 

switch for the expression of SOD activity. Consequently, an intriguing hypothesis could be that the 

increased levels of PrPSc may modify the ROS metabolism, causing the disease [105]. Therefore, a 

study aimed at identifying the domains which could carry out SOD-like activity, the species formed 

with copper(II) and their coordination features with respect to the scavenger activity against O2 

should clarify the correlation between PrPC and SOD activity. The N-terminal region role has been 

invoked because a mouse prion protein mutant, lacking this octapeptide-repeat region retained the 

60% of copper but it was SOD inactive [115]. In addition, the SOD activity of mouse PrPC  mutants 

with none, one, two, three octarepeats was tested and compared to wild type. The mutants 

containing one or no octarepeat did not show SOD-1 activity. The mutant PrPC with two and three 
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octarepeats displays an activity very similar each other and however lower than that of the wild type 

protein [149]. Therefore, the presence of a copper(II) coordination with three or four imidazoles in 

the octarepeats region can favour SOD-like activity for this complex species. A SOD activity has 

been reported for copper(II) complexes with tetraocta and tetrahexarepeats by means of indirect 

assays, while longer chicken peptide fragments did not show any activity [150-151]. 

In contrast with these results, other studies have questioned PrPC SOD-1 activity [152-153], in vivo 

and in vitro. In particular the experimental approach (indirect assay based on xanthine/xanthine 

oxidase system) has been challenged [153]. Consequently, the use of a direct method, such as the 

pulse radiolysis, to determine SOD-like activity is more valuable than indirect assays [140]. 

Studies carried out by means of pulse radiolysis [140] show that: i) copper complexes with 

mammalian tetrarepeats, (PHGGGWGQ)4, show a very low SOD-like  activity, two orders of 

magnitude less than SOD enzyme, and less than other copper(II) complexes with small molecules 

such as amino acids and peptides [154-156]; ii) the analogous complex species with chicken 

repeats, (PHNPGY)4, display no SOD activity and further, the superoxide radical reacts with 

(PHNPGY)4 in no catalytic fashion, involving tyrosine residues. Recently, the prion protein-

associated SOD-1 activity in Pichia pastoris has been studied [157]. Different test systems showed 

that prion protein gained a SOD-like activity only in the presence of additional copper in the 

medium. To explain the conflicting results on SOD-like activity of PrpC in vitro and in vivo, it was 

proposed that hyperphysiological concentrations of copper are needed for prion protein to act as 

SOD-1 mimics. Interestingly, the failure of copper complex species with synthetic peptide 

encompassing the four repeats of the mammalian sequence to show SOD activity was explained 

invoking the need of the involvement also of the histidines 96, 111 or 187 in the metal binding for 

the SOD-like activity of PrPC  [157].  
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Copper complex species with chPrPC peptide fragments show binding constant values [84, 87, 133-

135, 140] lower than those found in SOD-1 enzymes. This appears in contrast with the biological 

significance of a true SOD-like enzyme in vivo, which has to bind strongly the metal ion. 

The conflicting results here reported stress the need to have more valuable data on key questions 

concerning the affinity constants of the different copper complex species formed with prion protein, 

their redox properties and the dual role of copper ion, protective or toxic cofactor in prion diseases 

[158]. 
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Figure Captions 

 

Figure 1. Sequence alignment of prion proteins from different species.  

 

Figure 2. Primary structure of chicken prion protein (chPrPC). 

 

Figure 3. Tetra-hexarepeat domain conformations as a function of pH (acidic LH8
4+, neutral 

LH4
1;LH4

2 and basic L4-) obtained from MD simulations ref [84]. The different structures are shown 

according to a colour code: blue for turn, violet for 310 helix and gray for coil regions. The 

phenolate hydrogens and oxygens of tyrosines 6, 12, 18 and 24 are shown respectively in white and 

red, the imidazole nitrogens of histidines 2, 8,14, 20 are shown in silver blue and the amide 

hydrogens of asparagine 21 are shown in white. The side chains hydrogen bonds are circled in blue. 

N and C termini are shown respectively from left to right.  

 

Figure 4. a) Major complex species 2N(Imidazole)2O(water); b) Minor complex species 2N 

(Imidazole, amide)2O(tyrosine,water). 

 

Figure 5. Copper coordination mode of metal ion complex with the tetra-hexarepeat domain 

suggested from EPR parameters (g║ = 2.257; A║ = 187 × 10-4 cm-1).  



  

Chicken MARLLTTCCLLALLLAACTDVALSKKGKGKPSGGGWGAGSHRQPSYPRQPGYPHNPGYPH  60
turtle  MGRYRLTCWIVVLLVVMWSDVSFSKKGKGK-GGGGGNTGSNRNPNYPSNPGYPQNPGYPR  59
mouse   --MANLGYWLLALFVTTCTDVGLCKK--RPKPGG-WNTGGSRYPGQGSPGGNRYPPQSGG  55
human   --MANLGCWMLVLFVATWSDLGLCKK--RPKPGG-WNTGGSRYPGQGSPGGNRYPPQGGG  55
cattle  MVKSHIGSWILVLFVAMWSDVGLCKK--RPKPGGGWNTGGSRYPGQGSPGGNRYPPQGGG  58
Xenopus -MPQSLWTCLVLISLICTLTVSSKKSGGGKSKTGGWNTGSNRNPNYPGG----YPGNTGG  55

chicken NPGYPHNPGYPHNPGYPQNPGYPHNPGYP-------------GWGQGYNPSSGGS-YHNQ 106
turtle  NPSYPHNPAYPPNPAYPPNPGYPHNPSYPRNPSYPQNPGYPGGGGQHYNPAGGGTNFKNQ 119
mouse   TWGQPHGGGWGQPHGG--GWGQPHG----------------GGWGQPHGGGWSQGGGTHN  97
human   GWGQPHGGGWGQPHGG--GWGQPHG----------------GGWGQPHGGGWGQGGGTHS  97
cattle  GWGQPHGGGWGQPHGG--GWGQPHG----------------GGWGQPHGGGGWGQGGSHS 100
Xenopus SWGQ-----------------------------------------QPYNPS------GYN  68

chicken KPWKP--PKTNFKHVAGAAAAGAVVGGLGGYAMGRVMSGMNYHFDRPDEYRWWSENSARY 164
turtle  KPWKPDKPKTNMKAMAGAAAAGAVVGGLGGYALGSAMSGMRMNFDRPEERQWWNENSNRY 179
mouse   QWNKPSKPKTNLKHVAGAAAAGAVVGGLGGYMLGSAMSRPMLHFGNDWEDRYYRENMYRY 157
human   QWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRY 157
cattle  QWNKPSKPKTNMKHVAGAAAAGAVVGGLGGYMLGSAMSRPLIHFGNDYEDRYYRENMYRY 160
Xenopus KQWKPPKSKTNMKSVAIGAAAGAIG----GYMLGNAVGRMSYQFNNPMESRYYNDYYNQM 124

chicken PNRVYYRDYSS--PVPQDVFVADCFNITVTEYSIGPAAKKNTSEAVAAANQTEVEMENKV 222
turtle  PNQVYYKEYNDR-SVPEGRFVRDCLNNTVTEYKIDPNE-----------NQNVTQVEVRV 227
mouse   PNQVYYRPVDQY-SNQNN-FVHDCVNITIKQHTVTTTTK----------GENFTETDVKM 205
human   PNQVYYRPMDEY-SNQNN-FVHDCVNITIKQHTVTTTTK----------GENFTETDVKM 205
cattle  PNQVYYRPVDQY-SNQNN-FVHDCVNITVKQHTVTTTTK----------GENFTETDIKI 208
Xenopus PNRVYRPMYRGEEYVSEDRFVRDCYNMSVTEYIIKPTEGKN--------NSELNQLDTTV 176

chicken VTKVIREMCVQQYREYR------LASGIQLHPADTWLAVLLLLLTTLFAMH          267
turtle  MKQVIQEMCMQQYQQYQ------LASGVKLLSDPSLMLIIMLVIFFVMH--          270
mouse   MERVVEQMCVTQYQKESQAYYDGRRSSAVLFSSPPVILLISFLIFLIVG--          254
human   MERVVEQMCITQYERESQAYYQ-RGSSMVLFSSPPVILLISFLIFLIVG--          253
cattle  MERVVEQMCITQYQRESQAYYQ-RGASVILFSSPPVILLISFLIFLIVG--          256
Xenopus KSQIIREMCITEYRRGS---------GFKVLSNPWLILTITLFVYFVIE--          216



 
 
Figure 2. Primary structure of chicken prion protein chPrPC 
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Figure 3: Tetra-hexarepeat domain conformations as a function of pH (acidic LH8
4+, neutral LH4

1;LH4
2 and basic L4-) 

obtained from MD simulations of ref [84].  It is worth noting the strong conformational dependence on pH: At acidic pH the 
histidine 8 is involved in a 310 helix. At neutral pH, upon the deprotonation of the four histidines, this latter helix is 
disrupted because of the interaction between the imidazole nitrogen of histidine 8 and the phenol hydrogen of tyrosine 18 ( 
LH4

1). Such a conformation leads to the formation of another one in which tyrosines 6, 18, 24 are involved in a hydrogen 
bond network, as shown in  LH4

2.  At basic pH, when the four tyrosines are deprotonated (L4-, bottom) , a new interaction 
between the phenolate oxygen of tyrosine 24 and the side chain amide hydrogens of asparagine 21 causes a tilt of the 
peptide backbone, bringing all phelolate residues towards the water solvent (not shown for clarity). The different structures 
are shown according to a colour code: blue for turn, violet for 310 helix and gray for coil regions. The phenolate hydrogens 
and oxygens of tyrosines 6, 12, 18 and 24 are shown respectively in white and red, the imidazole nitrogens of histidines 2, 
8,14, 20 are shown in silver blue and the amide hydrogens of asparagine 21 are shown in white. The side chains hydrogen 
bonds are circled in blue. N and C termini are shown respectively from left to right.  
 
 
 



 
 
 
 
Figure 4: a) Major complex species 2N(Imidazole)2O(water); b) Minor complex species 2N 
(Imidazole, amide)2O(tyrosine,water) 
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Figure 5: Copper coordination inside the tetra-hexarepeat domain suggested from EPR parameters (g=; A//=).  
A square planar geometry involving the four histidines is adopted at physiological pH. 
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