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Abstract

We perform model calculations of the macroscopic diffusion coefficient for a solute mov-
ing in a chiral nematic (cholesteric) liquid crystal (LC) phase applying the methodology
developed in D. Frezzato et al., J. Chem. Phys. 122, 164904 (2005). Three types of
solutes with different features are studied: ellipsoid (roto-translational coupling (RTC)
absent), bent-rod ( RT'C present) and two-blade propeller (with RTC and chiral shape).
For each prototype molecule we estimate the effect of cholesteric helix pitch and local
order on the diffusion along the helix axis. For the ellipsoidal particle we find that
translational diffusion is slowed down by rotation around the short axis. For the chiral
solute we show that the enantiomer with shape chirality opposite to that of the LC
phase is slowed down more than the other. This provides a proof of principle of the

possibility of separating the two enantiomers via transport in a suitable chiral medium.



1 Introduction

In a previous work [1], from now on denoted as I, we have developed the theoretical tools to
evaluate the macroscopic diffusion coefficients in liquids and liquid crystals, namely in uni-
formly aligned and twisted nematic (or proper cholesteric) phases [2]. The method was based
on the calculation of the long-time behavior of the molecular mean-squared-displacement by
accounting for the full roto-translational dynamics in the overdamped regime of motion ac-
cording to the Fokker-Planck-Smoluchowski model [3]. In particular, we were interested in
investigating how the roto-translational (RT) coupling in the diffusion matrix (at microscopic
level) affects the macroscopic transport in the various phases. Differently from previously
available theories, that treated only diffusion in isotropic media [4], our analysis has consid-
ered in detail anisotropic phases, where the local orientational ordering is a further feature
influencing (and possibly controlling) the macroscopic transport.

The work in I was stimulated by the challenge of assessing the possibility of employing
twisted nematics to separate the enantiomers of a chiral compound on the basis of their
different diffusion properties. This idea is based on the fact that the friction tensor |5, 6],

DMF

and the corresponding diffusion tensor as well (here "MF" denotes a reference frame

attached to the molecule), differentiates the enantiomeric forms of a chiral compound: while

DM¥ are unaffected by inversion, the off-

the diagonal translational and rotational blocks of
diagonal roto-translational blocks change sign. Moreover the medium itself is intrinsically
chiral because of the helical twist of the director, and could discriminate the enantiomers
through their different rotational motion coupled to translation.

It is worth noticing that the separation between shape enantiomers in dynamic condi-
tions has been recently put forward as a viable technique, albeit in a rather different context
[7]. It has been demonstrated that enantiomers of mesoscopic particles can be discriminated
by exploiting a steady-state microflow of the embedding fluid in micro-fabricated devices.
Spatial separation emerges from the coupling between the microflow of the fluid (with spa-
tially variable vorticity due to the constraints imposed by the geometry of the device) and

the stochastic roto-translational diffusion of the particle; the chiral discrimination is due to

the existence of several attractors in the phase-space of the particle dynamics, with different



stability for the two enantiomers. On the contrary, in our work we focus on particles of
molecular dimensions, and refer to dynamics of the single molecule occurring in a chiral fluid
(the twisted phase) at thermal equilibrium. The phase itself provides directly the "environ-
mental" chirality probed at the molecular length-scale, which is responsible for enantiomeric
discrimination (and possible separation).

Since the practical implementation would require a significant differentiation between the
two enantiomers, our purpose is to estimate (with the help of the already developed tools
[1]) the magnitude of the diffusion coefficient for simple "archetype" chiral molecules and
for reasonable parameterizations of the chiral phase. This constitutes the main issue of the
present work devoted to model calculation.

In particular we focus on the macroscopic transport coefficient, D,,,;(uy,), along the helical
axis, uy,, of the phase. Anyway, some intermediate steps are required to achieve a basic view
before exploring the molecular chirality feature. We proceed by selecting some archetype
molecules of growing complexity: 1) an ellipsoidal molecule possessing no RT coupling in
the roto-translational diffusion matrix DM¥’; 2) an a-chiral bent-rod molecule possessing RT
coupling; 3) a propeller-like molecule possessing both RT coupling in the matrix DM¥ and
shape chirality. Our aim is to answer the following questions by directly looking at the profile
of D, (up,) versus the increasing pitch of the phase (i.e, passing from a strongly twisted
phase to a uniform nematic): i) How does the strength of local orientational potential and
thus the local order affect the macroscopic translational diffusion? ii) Since the twist of
the director on the short length-scale generates local biaxiality of the nematic-like phase,
can such biaxiality induce significant effects on the macroscopic diffusion? iii) Which is the

DM matrix) on the long-range diffusion?

effect of the hydrodynamical RT coupling (in the
Then, our final question is: iv) Can shape enantiomers be distinguished by the translational
diffusion process?

Along these lines, the paper is structured as follows. In section 2 we summarize the
methodology presented in I for the evaluation of the macroscopic transport coefficient in

cholesteric phases, by specifying the leading contributions to migration along the helical

axis up,. Technical details required to compute D,,;(up,) are described in section 3 and



in the EPAPS Supporting Information [8]. In section 4 we outline the model calculations.
The answer to questions i) and ii) is given in section 5 by considering the simplest model
system, i.e., the ellipsoidal molecule. For a clear answer to question iii), in section 6 we take
into account the bent-rod molecule as the simplest object possessing hydrodynamical RT
coupling without chirality. Question iv) is faced in section 7 by considering the propeller-

like molecules. The last section is devoted to the main conclusions.

2 Macroscopic diffusion in cholesteric phases

In part I we have treated the problem of evaluating the macroscopic transport coeffi-
cient monitored along a generic direction u, D, (u), in isotropic, nematic, and twisted
nematic/cholesteric phases. In this section we review such methodology for the latter situa-
tion, and specialize it to the case of molecular migration monitored along the helical axis of
the phase denoted by uy,.

First, we recall (see figure 1) the systems of axes employed in part I to describe statics and
dynamics in a cholesteric sample modeled as a twisted nematic phase. We start by introduc-
ing a Molecular Frame attached to a moving probe-molecule, MF= (xM¥ yMFE zME) The
unique restriction about the choice of MF regards its origin, which should be located at the
so-called Center of Diffusion (CD) of the molecule in order to simplify the formal treatment
(as clarified in the following), while the orientation of the MF axes can be arbitrarily chosen.
Then we introduce a Laboratory Frame, LF= (x' yI¥' zf) with z!¥ = u,, along the
helical axis, while x“¥" is taken collinear to the director at the origin of the frame (which can
be arbitrarily located). With reference to LF, the variable that specifies the instantaneous
molecular state is @) = (r, 2), where r = (x,y, z) are the coordinates of the MF center and {2
is the set of Euler angles defined according to Rose’s convention [11] for the transformation
LF—MF.

From the long-time limit of the molecular mean-squared displacements, the coefficient



D, (u) is evaluated as

Dy (1) = lim [u- Ar(t)]2/2t (1)

t—oo

where the time evolution of Ar(t) is determined by the roto-translational (RT) dynamics
of the probe. The RT motion has been modeled as a diffusive process in the overdamped
regime [3], with (r,Q2) = @ the relevant stochastic variables. The input to the modeling
consists of i) the equilibrium distribution function p.,(Q), and ii) the microscopic friction
tensor for the RT small-steps dynamics in the local viscous environment.

In order to deal with a position invariant distribution, a further reference frame, namely
the Director Frame DF= (xP¥ yPF zPF) has been introduced. The axes of DF are position-
dependent: the z-axis is still collinear to the helical axis (as for LF), but the x-axis constantly
points along the local director at the actual location of the MF center. For a left-handed

twisted phase, the relation between the axes of DF and LF is

xPF = xM cos(qz) + y* sin(qz)
yPF = —xMsin(qz) + y* cos(qz)
zPF =2 =y, (2)

where g = 27 /p is a wavevector’s modulus being p the pitch of the phase. With reference to
the DF axes, the new stochastic variables are (r?", (') = Q" and the distribution function is
invariant under molecular translation, i.e., p.,(Q)") = pe,(€?'). Such a change of variables has
been exploited in order to derive the expression of the diffusion coefficient for macroscopic
translation monitored along a generic direction u in a left-handed cholesteric; see part I for
the formal derivation starting from the definition eq (1).

As a representative case, in this work we consider the diffusion along the direction of
the helical axis of the phase, u,. By employing the same notation introduced in I, and

specifying the general expressions for u = uy,, the diffusion coefficient D,,;(uy,) results as

Dielutns) = e - DPF @, — [ S F(O) () F (@l ) ®)
with the function f(£2) given by
() = peq(Q/)_luhz : Dgg(Q,)MDFpeq(Q,) +qUpg D:ID“Cﬁ(Q/)uhxpeq(Q/)_leDFpeq(Q,) (4)
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and the following operator I', acting on the orientational degrees of freedom

quherDF quhrMZDF -
[y =— MPDF DY (Q)peg (V) MPDF Peg ()7 (5)

where MPF is the infinitesimal rotation operator expressed in the DF. In the equations
above, DP¥ (') is the 6 x 6 diffusion matrix for the RT small-steps dynamics referred to
the DF axes, which is partitioned into pure translational (TT), pure rotational (RR), and
coupling roto-translational (RT, TR) 3 x 3 blocks.

It should be stressed that eqs (3)-(5) have been derived by exploiting the symmetry
relations for the blocks of DPF(Q)') holding if the origin of MF is chosen coincident with
the Center of Diffusion, as anticipated. According to such a choice, the off-diagonal blocks
result symmetric and therefore identical. In fact, DP¥()’) can be related to the (constant)
diffusion matrix referred to the MF axes, D™ by means of the following transformation

under rotation of the reference frame,
DY) = (E@ E)D" (E® E)”" (6)

where E(€') is the Euler matrix related to the MF—DF transformation. If the origin of
MF is placed in CD, then DMI" = (DMF)" = DMI" and the same relations hold also for the
blocks of DPF(Q)') through eq (6). Thus, employment of equations (3)-(5) only requires to
locate the origin of MF at the CD point, while no restrictions about the orientation of the
MF axes are imposed.

The diffusion matrix referred to MF can be evaluated on the basis of generalized Stokes
equations for RT motion of the molecule treated as a macroscopic-like object embedded in
isotropic viscous environment. The connection between frictional force/torque (F and N)

and linear/angular velocities of the body (v and w) is realized through the viscous tensor,

EME | partitioned into translational, rotational and coupling blocks,
MF  ¢MF
F _ _gMF Vil [Srr STR v (7)
MF  ¢MF
N w RT SRR w

Evaluation of € requires the solution of the hydrodynamical problem for the specific

body under consideration [4, 5, 6, 9, 10]. Once M s specified, Einstein’s relation allows
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the evaluation of the diffusion matrix in the molecular frame as
DME = T (gMF) ! (8)

Further input in eqs (3)-(5) is the equilibrium distribution, which can be specified by
means of the orientational potential V,(£Y) acting on the molecule and quantifying the de-
gree of alignment of the molecular axes with respect to DF. The corresponding Maxwell-
Boltzmann distribution is specified as

o~ Va(@)/kpT

/dQl V() kT

peq(Q,) - (9)

The dependence of the orientational potential on the pitch is explicitly indicated by the
subscript "q" (we omit such a subscript for the equilibrium distribution). Such a dependence
is due to the twist of the phase as sensed at the molecular level [15]. Intuitively, the main
pitch-dependent effects on the molecular alignment are i) a modulation of the strength of
orientational ordering with respect to the local director (the x”*" axis), and ii) the appearance
of phase biaxiality about such an axis [15]. To quantify these effects we introduce a more

(XDF/ yDF/ ZDF/)

) Y

natural director frame, DF’= , with zPF" taken along the local director
and xP" collinear to the helical axis. With respect to DF’, the molecular orientation is
denoted by Q”. By adopting the same choice made in ref. [12], we quantify the molcular

alignment in DF’ by means of the following set of second-rank order parameters,

<R(2),O>DF’ = W

(RS )pr = Re { D3, () }

(B3 )oer = Re { D3, (@)}

(R 2)oe = 3Re { DE(0) + DE ()} (10)

where D; ,(Q") are rotational Wigner functions [11] and the averages are performed with
respect to the equilibrium distribution. Notice that (R§,)pr is the common second-rank
order parameter P, which quantifies the degree of alignment of the molecular axis z™* with
respect to the local director (at the origin of MF); the parameter (R3)pr quantifies the

degree of phase biaxiality about the director (it vanishes for uniaxial nematic alignment),



(RaQ) pr specifies the molecular biaxiality about z*| and finally <R§72>DF/ reflects the global
biaxiality of phase and molecule [12] .

In summary, the required physical ingredients to be specified are: i) the pitch of the phase,
ii) the (pitch-dependent) orientational potential acting on the probe molecule and referred
to the DF axes, V,({?'), and iii) the roto-translational friction tensor referred to the MF axes,
£M F_ Once these ingredients are supplied, the numerical estimation of D,,;(uy,) is achieved
by solving eqs (3)- (5). In the next section we outline the computational methodology

employed to solve the leading equations for a given parameterization of the system.

3 Computational methodology

In this section we describe the routes to parameterize the problem, and the procedure for
the numerical evaluation of D, (uy,) according to eqs (3)-(5). Technical details are supplied
as Supporting Information [8|.

At the implementation stage, the orientational potential V,(€?') and the elements of
DPF((Y) are conveniently expanded on the base of Wigner rotational functions [11]. By

exploiting the relation MP¥ = iJPF where JPF

is the angular momentum operator with
components referred to the DF axes, the action of the rotation operator on the Wigner func-
tions can be easily explicitated (see the Supporting Information [8]). Therefore, (normalized)
Wigner functions constitute the elements of the natural orthonormal base onto which the
integral eq (3) can be expanded. Along this line, first we introduce the parameterization of
the orientational potential acting on the single molecule, then we give the explicit form of

the angular dependence of the diffusion matrix elements referred to the DF axes. Finally,

the tools for the numerical solution of the problem are outlined.



3.1 The orientational potential

The derivation of the ¢g-dependent orientational potential acting on a generic molecule in
the twisted director field is treated in detail in ref. [15]. The construction of the potential
is based on the phenomenological "surface interactions model" [13]. In such a model one
assumes that the net molecular alignment results from contributions of all elements of the
exposed molecular surface: each surface element at a point P is forced to "contain" the local
director experienced at such location, through a second-rank interaction which destabilizes
the alignment of the surface-normal along the director itself; then, the overall mean-field
potential acting on the molecule at orientation 2’ is given by the following surface integral

V(&)
kT

.y /S do(P) Py(s(P, ) - n(P,Y)) (11)

where s(P,()') is the normal vector to the surface (with Cartesian components referred to
DF) at the point P, n(P,Y') is the director experienced at the same location, and Ps(---) is
the second-rank Legendre polynomial. The parameter € > 0 (having physical units of inverse
surface area) quantifies the strength of the alignment.

In ref. [15], the general form eq (11) is elaborated for the specific case of helical direc-
tor field probed at the molecular length-scale. The analysis leads to the following general

expansion on the base of rotational Wigner functions

VZS;) = Y D womr(@DL () + DD D wimrl@) D () (12)

m=0,%2 k=—2 J>3 m=+2 k=—J
where the ¢-dependent weights w,, x(¢) can generally be complex-valued, with the constraint
Wimk(@)* = (=1)™* *w;_,._1(q) imposed by the requirement that the expansion eq (12)
must be a real function. These coefficients are related to the molecular symmetry, dimensions
and surface topology.

As the pitch increases with respect to the linear dimensions of the molecule, the second-
rank terms for J = 2 become dominant in eq (12). In the present work we refer to such a

limit case by adopting the following model form for the potential

V() .
kT > womi(q) Dy () (13)

m,k=—2
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which is exact only for ¢ = 0, i.e., for untwisted nematics. The explicit form of the coefficients
wa.m x(q) will be reported for the case of ellipsoidal molecule (see section 5). These coefficients
constitute the input parameters about the statics of the system. We stress that, even at this
lowest level of approximation, the main effects of the director twist discussed in section 2

can be captured.

3.2 Orientational dependence of the diffusion matrix referred to DF

The orientational dependence of the diffusion matrix referred to the DF system of axes
is fully specified by eq (6). However, we need an operative form of such dependence in
terms of Wigner rotational functions rather than products of Euler matrix elements. This
can be achieved first by exploiting the transformation properties of the irriducible spherical
components of the second-rank tensorial blocks D2E DPE DB = DLE under rotation
of the reference frame [11]|, and then converting back to Cartesian components (see the

Supporting Information [8]). The resulting expression is

DI = 3 ST (LA, M)D (@) (14)

L=0,2 M,M'=—L

where xx stands for TT, RR, RT=TR, and the indices 7, j label the axes of DF. The sum
eq (14) is restricted to L = 0,2 because all the blocks are second-rank symmetric tensors.
The coefficients ;7 (L, M, M') result as combinations of elements of DM¥  and are explicitly

DMFE constitute

given in the Supporting Information [8]. Thus, the elements of the matrix
the input parameters for the dissipative dynamics, and can be evaluated from eq (8) once

the friction tensor is supplied.

3.3 The matrix handling

Hereafter we outline the procedure adopted to calculate D,,;(uy,) according to eqs (3)-(5).
The first addendum at the r.h.s. of eq (3) is simply an equilibrium average which can be
evaluated by employing the expansion eq (14) for the specific element of the TT block (the

explicit expression is given in the Supporting Information [8]). From now on we focus on
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the route to evaluate the second addendum of eq (3). Apart of the sign, such a contribution

can be rewritten as

[ @) () @) = / G (15)

with
Gt) = / 49 ()6 T F()ponl(2) (16)

One can recognize that G(t) has the same structure of the integral specifying a rotational
time-correlation function, and that the r.h.s. of eq (15) is nothing but its spectral density
(Fourier-Laplace transform) evaluated at zero-frequency. Such interpretation of the second

1

addendum of eq (3) avoids to work with the inverted operator (I'f)~', and allows one to

adopt the standard methodologies used for the calculation of time-correlation functions.
First we employ the symmetrized form of the evolution operator, F’ peql/ 2(Q Top %2(9 ),

so converting eq (16) into the following symmetric form

G(t) = / 49 ()l e T F(Q () = (F(SY) e 0 F(Q)) (17)

with FI(Q) = f(2)pe(Y). For the latter identity in eq (17), the conventional bra-ket

notation has been adopted to represent the hermitian scalar product with general properties

(1 ()] () = / QY f1 ()" fo() = ()] /()"
(f1(2)]0] /() = / Y fi(QY) Of(Y) = (L(D)|O A())” (18)

being O is a generic operator acting on functions of €, and O denoting its adjoint.
Equation (17) can be expanded onto a complete set of orthonormal functions spanning
the space of the Euler angles, yielding a matrix form of the scalar product. As mentioned

before, the natural choice is that of using the normalized Wigner functions

| 2jN+1 12 iN / /
|N> = |]N,mN, kZN> = 871'2 DmN kN(Q) y <N|N> = 5N,N’ (19)
with N = (jy, mny,ky) denoting the cumulative set of indices of the basis elements of
ranks jy > 0 and my, ky = —Jn, -+ ,+Jn. In practic, a finite-size matrix is handled

12



by truncating the rank jy in correspondence of a given value j,,... Equation (17) is thus

converted into
TV
G(t) = Fe Lot (20)
with the elements of the vector F' and of the complex-hermitian matrix f‘g given by

(F)y = (NIF()) ,  (T))n.v = (N[Th|NVa) (21)

and to be formally evaluated according to egs (18). The explicit form of f{) can be derived
from the symmetrization of I'}, given in eq (5). By employing MP¥ = iJP¥ and considering

the equivalence of the TR and RT blocks of the diffusion matrix, one gets

) = ¢ Olw,, - DRE(Q)up, O, + ¢ [Olwy, - DRE(Q)O + ODEL(Q)w,,0.] +
+ODEE(ONO (22)

with the following (not hermitean) vectorial operator
1
O = LIV @)) + 17 (23)

By employing the expansion of V,(€2') on the base of Wigner functions, the integrals for the

matrix elements in eq (21) can be subdivided into terms of the kind

(N1|OLgas () Op|N2) (24)

[e7

where the functions g,s(€?') assume specific forms according to the different contributions in

eq (22). Integration by parts allows the convertion of eq (24) into the form

{(Oa®, (2))]9as(2) (O P, () (25)

with @ () = |N) given in eq (19). Therefore, one needs to specify the action of the
components of O on the bra- and -ket functions, and then to evaluate the integral eq (25).

Evaluation of these integrals requires the reiterated use of standard tools of the angular
momentum algebra [11], and in particular: (i) explicit action of the JP¥ components on
the Wigner functions; (ii) exploitation of the symmetry properties of the Wigner functions

Di%k(Q’) and of the coefficients ws,, x(¢) in eq (13) under change of sign of the projection
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indeces m, k; (iii) explicit integration of products of several Wigner functions (up to 5) involv-
ing the Clebsch-Gordan coupling coefficients [11]; (iv) compact keeping of the expressions.
Since the algebra is quite elaborated, for the benefict of future applications the resulting
expressions of the matrix elements (f‘{)) Ni.N,, Of the vector elements (F')y, and of the first
addendum in eq (3) are supplied in the Supporting Information [8]. Even if the procedure
above outlined is quite general, the explicit relations refer to the case of V,(£') approximated
to second order terms as in eq (13).

The scalar product eq (20) can be then evaluated by recurring to the Lanczos algorithm
[16] for the complex-hermitian matrix f‘() The Lanczos procedure generates the optimal
subspace of functions onto which such scalar product can be expanded. Such a subspace
consists of a bi-orthonormal base of functions divided into left (L) and right (R) subgroups,
whose elements are denoted respectively by |N.) and |Ng), and with (N |Ny) = dy . This
subspace is generated by means of a three-terms iterative procedure involving the elements
of T, and starting from the first elements |1,) = [F(Q')*)/A and |1z) = |F())/N\, where
NZ = (F(€)?) ensures the normalization (17|1g) = 1. The vectorial representation of these
functions are the so-called left- and right- starting vectors, whose elements are respectively
(N|11) = (F)%/N and (N|1g) = (F)y/N. The dimension of the generated subspaces equals

the chosen number of iterations (nsteps). Equation (20) is then converted into

G(t) = N1 le T 1g) = N2 [T | (26)
where T is the tri-diagonal matrix
i,j=1,-- nsteps: (T)ij = iij + Pminfij}+1 Oi—jl.1 (27)

with «;, §; (generally complex) generated by the iterative procedure. Then, by inserting eq
(26) into eq (15), the required spectral density at zero-frequency results as N?[T']; ;. By
exploiting the basic block-partitioning of the inverse matrix to evaluate the element 1,1 one

gets the following continued-fraction form

/ h dtG(t) =N [T7'] | = N2ﬂ2 (28)

o — ———E——
S B
ag—-.-

g —
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which is (apart of the sign) the second addendum at the r.h.s of eq (3).

At the computational stage, FORTRAN codes have been written to implement the
methodology above described. The check of the convergence on the values of D, ()
has been done with respect to the extension of the orthonormal base (i.e., with respect to
Jmaz), and to the number of steps of the Lanczos procedure (nsteps). In all the cases pre-
sented in this work, convergence within 5 x 1072% has been achieved with j,,., = 8 and
nsteps = 200. It should be stressed that the Lanczos procedure is efficient only in case of
sparse matrices f‘6 On the contrary, from eq (20) one should proceede through the time-
consuming direct inversion of the (generally very large) matrix f‘{), or equivalent procedures
like the diagonalization route. Notice that the use of an orientational potential containing

only second-rank terms (see eq (13)) allows one to keep the matrix f‘() sufficiently sparse.

4 Archetype molecules and outlines of model calculations

For the model calculations of D,,;(uy,) versus the pitch of the twisted phase we chose three
archetype molecules: 1) an ellipsoidal molecule with no RT coupling in the roto-translational
diffusion matrix, 2) a bent-rod molecule having RT coupling, and 3) a chiral propeller-like
molecule made of two twisted disks. The analysis will start from the simplest archetype
geometry, i.e., the ellipsoidal molecule. The purpose is to evaluate, separately, the effects
on D,,;(up,) due to: i) the phase biaxiality induced by the director twist at the molecular
length-scale; ii) the increasing of the local order parameter P = (R ) py; iii) the slowdown
of the rotational dynamics about the molecular short-molecular axes. Then we will turn to
biaxial molecules possessing RT coupling in the microscopic diffusion matrix, beginning with
the bent-rod molecule; consideration of the two geometric enantiomers of the propeller-like
molecule will complete the analysis by exploring the effects of the shape’s chirality feature.

As previously discussed, inputs for the calculation are the diffusion matrix in the molec-
ular frame, obtained by inverting the friction tensor €M according to Einstein’s relation eq

(8), and the (pitch-dependent) coefficients ws ,, () entering eq (13) for the orientational po-
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tential. These quantities are specified for the three archetype geometries in the next sections;
the following remarks should highlight the general approach to the parameterization.

To evaluate the elements of € we invoke standard models for the RT friction of a
rigid body moving in an isotropic fluid [4, 5, 6, 9, 10]. These approaches are based on the
solution of the quasi-static form of the hydrodynamic equations for creeping motion of the
fluid, which requires to confine the analysis to small values of both the translational and
the rotational Reynolds numbers [5]. The fluid is treated as incompressible, and inertial
contributions are neglected with respect to the viscous terms in the Navier-Stokes equation.
The simplified equations of the motion are solved by imposing the fluid to be at rest at infinite
distance from the body, and by using stick boundary conditions of the velocity field at the
body’s surface. In despite of these unrealistic boundary conditions if applied to objects
of molecular dimensions, these models provide friction coefficients that allow an accurate
reproduction of spectroscopic observables sensitive to the RT motions of single molecules
in the overdamped regime. Nevertheless, we want to stress that these models approximate
the molecular environment to an (average) isotropic fluid with (average) shear viscosity 7.
Therefore, the assumption we are forced to make is that the nematic-like environment is
probed by the molecule as an isotropic medium from the point of view of the viscous drag.
Identification of the effective viscosity n from the dissipative coefficients entering the stress
tensor for the locally anisotropic phase (which are, at least, the five independent Leslie
coefficients for uniaxial nematic alignment [2]) is not a trivial task. On the other hand, the
viscosity enters only as a scaling parameter for D,,;(uy,). Since we are interested in relative
variations of the transport coefficient versus the pitch of the phase, an accurate estimation
of n is not required; the value n = 0.01 Pas, which is within the typical range of shear
viscosities of low molecular-weight nematics [2|, will be used in all the calculations referred
to T'= 300 K.

Concerning the parameterization of the orientational potential, we take into account
that the local biaxiality due to the director twist at the molecular length-scale is very small
even for short pitches [15]. Our hypothesis is that the biaxiality would introduce only a

minor correction to the values of D, (u,) evaluated for uniaxial alignment. Accordingly,
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the parameterization of the orientational potential at ¢ = 0 constitutes the reference for all
archetype molecules. In order to validate such assumption, the correction due to the local
biaxiality will be quantified only for the simplest object, i.e., the ellipsoidal molecule.
Finally, the larger linear dimension of 30 A is chosen for the archetype molecules. In all
the cases, calculations of D,,;(uy,) have been done for several values of the pitch ranging

from 500 A up to very long pitches corresponding to the untwisted nematic phase.

5 Ellipsoidal molecule

Let us consider an ellipsoid of revolution about its major axis, i.e., a prolate spheroid of
lentgh 2a and width 2b with a > b. The axis z*¥" of MF is taken along the major axis of the
ellipsoid, while the transverse axes are arbitrarily chosen due to the cylindric symmetry of
the molecule (see Fig. 2). Due to the molecular symmetry, the origin of MF (the Center of
Diffusion) coincides with the center of mass. No roto-translational coupling emerges in the
friction matrix, i.e., €np = &% = 0. Moreover the diagonal blocks of the friction matrix,
£¥TF and 5%5 , are uniaxial tensors both diagonal in the adopted MF'.

The elements of the friction matrix are quantified by means of Perrin’s model based on the
solution of the hydrodynamic equations employing stick-boundary conditions at the molec-

ular surface [5]. The leading expressions are hereafter summarized. For the translational

block one has

CL2 _ b2
(€77 ) xx = (677 )yy = 327T(2a2 —302)S + o0

(EMF) = 16m - (29)
T/ zz (2a% — b?)S — 2a

while for the rotational block

MF MF 321 at — bt
(€rr ) xx = (CRR )yy = 3 (2a2— b2)S—2a77
(ebr)  — 32 (a? — b*)b?

mR)zz =73 g — 28

(30)
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where the quantity S is defined as

2 a+va? —b?
a>b: S:mln 2 (31)

and 7 is the viscosity of the molecular environment. Then, the required non-vanishing

elements of the diffusion matrix are given by

1

i=XY.Z: (D), =keT (@), . (D), = keT (&),

(32)

The diffusion matrix has been evaluated for the geometrical parameters indicated in Fig. 2,
and for n = 0.01 Pas, T'= 300 K. The values are reported in Table 1.

We turn now to specify the alignment properties of the molecule. In order to parameterize
the pitch-dependent orientational potential, we adopt the surface interaction model (see
section 2) in the form developed in ref. [15]. The modeling requires the parameterization
of the ellispoidal surface by employing spherical coordinates referred to the MF axes, i.e., 6
and ¢ as polar and azimuthal angles identifying a surface point at distance r4(#) from the
origin of MF. For the specific geometry, the orientational potential results to be expressed

as

V()
L= Y wme@Dhe@) + Y Y wamal@) D) (33)
m=0,£2 J>4,even m==£2
with the coefficients of the expansion given by

J+2 +1

Wymo(q) = eda, o(7/2) Z Z (=DY2 Iy —n(q) C(1,2, 7;0,m)C(1,2, J;n, —n) (34)

I=|J—2|, even n=-1
where C(Jy, Ja, J3;m1, my) are Clebsch-Gordan coefficients and d7, (- - - ) are reduced Wigner
functions [11]. The factors I;,, ., —n(q) are the following ¢-dependent molecular-surface inte-

grals

I —n(q) = 2m(20 4+ 1) / df sin 6 \/7’0(6)4 + (a? — b2)2sin? f cos? O x
0

* gi(|mlaro(0)) dy,o(0) xn(6) (35)
with 79(0) = [a® — (a® — b?)sin? 0]'/2, and the functions x, () defined as

) — @2, (04 5(6) if0<6<r/2 36)
2, 00— B(0) ifn/2<0<n
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for a > b, where

1/2

3(8) = arccos |1+ ( (a” = ) sin 0 cos 0 )2] _ (37)

a? — (a? — b%) sin* @

In eq (35) ji(---) are spherical Bessel functions of rank [ [14]. The weights w;,,0(¢) can
be determined for each ¢ value once the strength-parameter € is specified. Values of ¢ have
been tuned in order to yield P, ~ 0.60 and P, ~ 0.80 in the infinite-pitch limit (uniaxial
alignment), and then used to parameterize the potential at finite pitch values. The employed
values, together with the generated order parameters referred to the DF’ axes (see egs (10)),
are reported in Table 1.

In Fig. 5 we show the calculated profile of D,,;(uy,) versus the pitch for P, ~ 0.60. The
full circles are referred to calculations performed without accounting for the biaxiality of the
phase induced by the director twist, while the open circles are referred to calculations includ-
ing such a dependence on the orientational potential. First we note that both profiles tend
to a limit value as the pitch increases, D,,; (U )s0; such a value corresponds to the diffusion
of the probe in the (untwisted) nematic phase along an arbitrary direction perpendicular to
the macroscopic director. By looking at the same profiles in the other way round, the twist
of the phase causes a slowdown of the macroscopic migration along the helical pitch. Notice
that the variations of D, (u,,) with respect to D, (s, ) are very small. For the profile
with full circles, the largest variation referred to the asymptotic value is less than 1.5%.

The inclusion of the phase biaxiality induced by the twist of the director field produces a
further slowdown of the translational diffusion, but the contribution to the value of D,,;(uy,)
is roughtly only 1/10 of the total amount. Therefore, at first instance, the local biaxiality of
the ordering can be ignored.

We turn now to consider the effect of the increase of the order parameter. In Fig. 6
we compare the profiles for P, ~ 0.60 (open squares) and P, ~ 0.80 (open circles). The
calculations have been performed by neglecting the pitch-dependence on the orientational
potential, with the purpose to highlight the effect of the order parameter alone. To compare
the two profiles, the values of D,,;(uy,) are scaled with respect to their (different) asymptotic
values at infinite pitch. One sees that the increase of the orientational order induces a

slowdown of the macroscopic diffusion. Intuitively, such a slowdown of the translational
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dynamics has a frictional source: as P, increases the molecule tends to oppose to the motion
its elongated section, causing an increase of the average friction.

We conclude the analysis of the ellipsoidal molecule by investigating the effects due to
the decreasing of the rotational diffusion of the molecule about the short axes. In Fig. 7
the profiles of D,,;(uy,) versus the pitch are both calculated for P, ~ 0.60 and neglecting
the local biaxiality. The full circles are referred to the diffusion coefficients listed in Table
1 (the profile is the same as in Fig. 5), while open squares are referred to the coefficients
(D¥Yxx = (DMF)yy = 1.88 x 10° 571, i.e., reduced by a factor 10. It appears that the
slowdown of the rotational dynamics about the short molecular axes produces a significant
reduction of the macroscopic diffusion coefficient: at the shortest pitch, the decrease from the
asymptotic value shifts from ~ 1.5% to ~ 12%. This effect can be qualitatively explained by
recurring again to the pictorial connection between small-steps translations along the helix
and corresponding required rotations of the molecule about the short axes. In fact (for a
fixed order parameter) the charateristic rotational times about the short axes increase as
(DY xx = (DMF)yy are reduced, thus inducing a slowdown of the coupled translational
motion.

Summarizing, the following considerations can be outlined from the investigation of the
simple ellipsoidal molecule: i) an increasing order parameter P, induces a decrease of the
macroscopic diffusion coefficient with respect to the asymptotic value at infinite pitch; ii) a
major effect on the macroscopic diffusion coefficient is due to the slowdown of the rotational
dynamics about the short molecular axes. This suggests that elongated molecules should
diffuse slower than short molecules (at fixed order parameter); iii) the phase biaxiality in-
duced by the director twist can be ignored at the first instance, since it contributes only up
to 10 — 15% of the total deviation from the asymptotic value at infinite pitch.

According to the latter item one can parameterize the orientational potential in the
approximation of locally uniaxial phase (¢ = 0). Such a choice will be adopted for the more

complex geometries considered in the following.
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6 Bent-rod molecule

Let us consider a bent-rod molecule made of two linked rods. The MF system and the geo-
metrical details of the object are depicted in Fig. 3. In particular, d denotes the displacement
between the Center of Diffusion and the junction of the rods (which is always located along
the xM¥" axis at positive coordinate). The existence of RT coupling in the friction matrix
is expected by imaging to translate the molecule along z™*’; such a translation will induce
a tumbling about the axis yM¥. Equivalently, the translation along y™ would rotate the
molecule about zM7%.

The elements of the friction matrix are determined by adopting Wegener’s model [4].
Let us denote with £T, ¢ and £, &7 the translational and rotational friction coefficients
for the separated rods in the viscous environment (the labels | and || are referred to the

longitudinal and transverse axes of the rods). In the long-rod limit, corresponding to the

condition [/R > 1, the following relations hold [4]
gh=2=0 , ¢f=0/12 | ¢f=el (38)
with
b=4mn/In(l/R) , e=38m(R/1)?*/3 (39)
For sake of compact expressions, we define the following parameters

f1 =260 sin® /2 + 25{ cos® ar/2
fo = 2¢T cos® /2 + 2¢[ sin® o/2
o= €8+ (1226 (0

where m — « is the angle formed by the two rods (see Fig. 3). Wegener’s expressions are

herefater rewritten according to our notation. For the translational diagonal block one has
Er)xx=f  (Err)vw =2, (&7 )zz=h (41)
for the rotational diagonal block

(MY xx = 2f3co8? /2 + 2§|’|‘%sin2 a/2
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(EXS vy =2f3 + d*f1 — 2dE ] Isin /2
(EMEY 7 = 2f3sin /2 + 2§f cos® a/2 + 2d*¢T — 2d¢T I sin /2 (42)

while for the coupling blocks the unique non-vanishing elements are

€M)y = (M) 5y = Ellsina/2 — d fy

i) zy = (8 vz = —€TIsina/2 + 2d¢T (43)

The displacement d is not known a priori, that is, the location of the CD pole has to be
determined from the chosen geometrical parameters. To this purpose we start from a rough

estimation of d in the very long-rod limit [4],

2l sin a2
4 — cos? /2 sin® or/2

I/R>1: d~ (44)

Then the friction-matrix is built for values d > 0 ranging around the above estimation, and
the diffusion matrix is obtained as DMF = kpT(¢M¥)~! for each of them up to find the
(unique) d value which yields symmetric RT and TR blocks of the diffusion matrix. For the
geometrical parameters indicated in Fig. 3, the estimated value is d = 4.7A. By choosing
1n = 0.01 Pas and 7" = 300 K, the resulting non-vanishing elements of the diffusion matrix
are listed in Table 2.

The orientational potential acting on the molecule is parameterized, as stressed at the
end of section 5, by neglecting the local biaxiality induced by the director twist. Thus eq
(13) is specified as

+2
Vq:o(Q/)/k?BT = Z Z w?,m,k(O)Dfn,k(Q,> (45)
m=0,+2 k=—2
To evaluate the coefficients ws,, x(0) we exploit the additive nature of the orientational

potential in the case ¢ = 0. Correspondingly, V,_¢(€)') is obtained by summing up the

independent contributions from the two rods in the form
wa,mk(0) = dp o(m/2) co [Df o(QW) + Do ()] (46)

where Q1) = (7,a/2,0) and Q® = (7,7 — a/2,0) are the sets of Euler angles which specify

the transformations from MF to local frames with longitudinal axes collinear to the long axes
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of the rods. Moreover, ¢y = c(()l) = c(()Q) < 0 is a coefficient which quantifies the strength of

calamitic alignment of the long axes of the two equivalent rods with respect to the director.
By explicitating the involved Wigner functions, some algebraic rearrangements of eq (46)

yield the following expressions of the non-vanishing coefficients for m = 0, +-2

Wa,m0(0) = d2y o(7/2) co (3cos® /2 — 1)
Wam 42(0) = d2, o(7/2) co \/3/25in% /2 (47)

The coefficient ¢, is chosen to generate a local order parameter P, = <R§70> pr =~ 0.60. The
values of ¢y and of the generated order parameters (see eqs (10)) are collected in Table 2.
Based on the above parameterization, calculations of D,,;(uy,) have been done for several
values of the pitch; the resulting profile is plotted in Fig. 8. One can see that the profile
resembles that of the ellipsoidal molecule, that is no new features emerge when the sole RT
coupling is inserted in the diffusion matrix. Even for the bent-rod, an increasing twist of
the phase produces a slowdown of the macroscopic diffusion. The largest variation from the
asymptotic profile at infinite pitch, evaluated at p = 500 A, is ~ 0.8%, that is of the same

order of magnitude of that for the ellispoidal object of comparable dimensions.

7 Propeller-like molecule

We consider now a propeller-like molecule made of two identical disks rigidly linked and
tilted one with respect to the other by an angle 2¢). The adopted molecular frame and the
geometrical parameters are shown in Fig. 4. The Center of Diffusion coincides with the
middle point along the connecting line. The object possesses shape chirality, with the two
enantiomers characterized by opposite signes of the angle ). The shape chirality determines
RT coupling in the friction (and diffusion) matrix. The presence of RT coupling is intuitive

MFE. such a motion will induce the well

by imaging to translate the object along the axis x
known rotation of the propeller about x™# itself. Also, the translation along y™* induces

rotation about the same axis. The clock- or anticlockwise character of the induced rotations
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depends on the sign of the elements of the corresponding RT (TR) block, which is opposite
for the two enantiomers.

The elements of the friction matrix are determined by adopting the model of Happel and
Brenner [5|. Hereafter we summarize the approximated expressions of the friction tensor
elements in MF, which constitute the zero-th order truncation of full expansion into powers
of R/h < 1, where R is the radius of the disks while i denotes the separation of their

centres. For the translational block one has

32
( %JTF)XX = gnR(Q—FCOSQQ/J)

32 )
(& vy = e R(2 + sin® 1))
64
( %F)ZZ = EUR (48)

then for the rotational one

32
(&5 )xx = —n Rh*(2 +sin®¢)

3
32
( f\{g)yy = gn Rh2(2 + cos? V)
64
(kA )zz = 37 R’ (49)

and the non-vanishing elements of the coupling blocks are

MF MF

G My = (M) x =~y = SR sing cosy (50)

RT )XX = _( RT

Notice that the two enantiomers are distinguished only by the opposite sign of the RT (TR)
elements. The diffusion matrix is then derived by inverting £M¥. Model calculations have
been done for the geometrical parameters indicated in Fig. 4 and for n = 0.01 Pas, 7" = 300
K. The non-vanishing elements of the diffusion matrix are listed in Table 3.

We turn now to the parameterization of the orientational potential in the limit ¢ = 0.
As for the bent-rod molecule, the potential is built as superposition of contributions from
the single disks. The general expression of V(') given for the bent-rod (see eq (45)
with eq (46)) still holds. In the present case, the sets of Euler angles to be inserted in eq
(46) are QW) = (7 — b, 7/2,0) and Q® = (¢, 7/2,0), which specify the transformations
from MF to local frames tethered to disks I and II, respectively, whose longitudinal axes are

perpendicular to the disks’ planes. The coefficient ¢y = c(()l) = 082) > 0 here quantifies the
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strength of discotic alignment of the two equivalent mojeties with respect to the director. By
explicitating the Wigner functions one derives the following expressions for the non-vanishing

coefficients for m = 0, 2

Wam0(0) = —d2, o(7/2) co
Wo,ma2(0) = d2, o(7/2) co \/3/2 cos 20 (51)

The chosen value of ¢y and of the generated order parameters (see egs (10)) are collected in
Table 3.

On the base of such parameterization, D,,;(uy,) has been evaluated for the two enan-
tiomers at several values of the pitch. The resulting profiles are shown in Fig. 9, and reveal
that the enantiomers are distinguished on the base of their shape chirality. In terms of a
pictorial representation, one might think to compare the shape chirality of the propellers
with the chirality of the twisted phase, considering that all calculations are referred to a
left-handed twisted nematic. The right-handed enantiomer (» = +30°), having opposite
chirality with respect to that of the phase, shows again the characteristic monotonic increas-
ing of D,,;(uy,) versus the pitch already seen for the ellipsoidal and bent-rod objects. On
the contrary, the enantiomer with the same chirality of the phase (¢» = —30°) shows an
increasing profile up to a maximum value in correspondence of an intermediate pitch, and
then decreasing towards the asymptotic value (which is the same for both the enantiomers
in the untwisted nematic phase). Let us now look at these profiles in the opposite way, that
is by reducing the pitch. One can see that twisting the phase slows down the diffusion for
the enantiomer ¢ = +30°, while it speeds up the other one (¢» = —30°). In the latter case,
such "acceleration" increases up to a maximum as the twist increases; a further twist causes
a decreasing of the diffusion coefficient and, below a critic value of the pitch, for both the
enantiomers D,,;(uy,) is lower than the asymptotic value in the untwisted phase. Finally,
notice that the largest difference of D, (uy,) between the two enantiomers occurs at the

shortest pitch, and it is of the order of only ~ 1.0%.
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& Remarks and conclusions

The (macroscopic) diffusion coefficient for a solute moving along the helical axis of the twisted
phase, D,,;(uy,), has been evaluated for different model molecules of growing complexity, to
explore the influence of the local orientational order and of the pitch of the phase.

By considering the simple ellipsoidal molecule as a prototype of elongated mesogens,
we have found that an increasing degree of local calamitic order (at fixed pitch) causes
a slowdown of the macroscopic diffusion. Moreover, the local biaxiality of the ordering
induced by the twist of the director field yields a negligible correction to D,,;(uy,) evaluated
for uniaxial alignment. The latter outcome suggested us to neglect the local biaxiality in
the analysis of the more complex molecular geometries. We also find that reducing the
tumbling speed of the particle slows down the translation coefficient D,,;(uy,). Calculations
regarding the bent-rod molecule, possessing roto-translation coupling in the diffusion matrix
but no chirality, revealed a similar behavior of D,,;(uy,) versus the pitch as that found for
the ellipsoidal molecule.

On the contrary, some new features emerged for the chiral two-disks propeller: the two
shape enantiomers respond differently to variations of the pitch. Considering these findings
we come back to our main issue of the possibility of separating enantiomers by means of the
macroscopic translational diffusion. We have shown that moving in a chiral phase one of
the enantiomers is speeded up while the other is slowed down; beyond a critical twist (i.e.,
below a critical pitch) for both the enantiomers the diffusion is slower than in the untwisted
nematic phase but different. We have thus obtained a proof of principle that a separation
could be obtained. However, we have shown that the largest differentiation between the
propeller-like enantiomers occurs at very low pitch of the order of few tens of molecular
lengths, and that it amounts to only ~ 1.0%. It is reasonable to assume that for different
parameterizations about the degree of ordering, and for realistic chiral molecules, the order
of magnitude of such difference would not change consistently.

It worth to notice here that regardless of the specific kind of molecular architecture, the
deviations of D, (uy,) from the limit value in the nematic phase are substantially of the

same order of magnitude for molecules of comparable dimensions (even if the details of the
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the profiles in figures 5 - 9 depend on the specific geometrical features). Such a finding
can be rationalized with the following argument, based only on scaling properties without
accounting for the pitch-dependence of the equilibrium distribution. Let L be a characteristic
molecular length; by fixing the viscosity of the medium, the elements of the roto-translational
diffusion matrix referred to the Director Frame (DF) scale in simple way according to L: the
elements of the TT block are proportional to L~!, those of the RT blocks vary as L~2, and
those of the RR block depend on L™3. Accordingly, the function f({') specified in eq (4) can
be expressed as f()) = L™%[a+b(L/p)], with a and b coefficients dependent on the molecular
orientation. Then, the operator in eq (5) is written as Iy = L3[(L/p)*Arp+(L/p) Brr+Chrg)
with ATT, BRT and C’RR operators acting on the orientational variables. On this basis,
consideration of eq (3) leads to predict a dependence D,,;(uy,) oc L~'F(L/p), where F'(L/p)
is some (unknown) function of L/p. The factor L~! is intrinsic for translational diffusion
coefficients (and essentially it sets their order of magnitude when the viscosity is specified).
On the contrary, the factor F'(L/p) is the emergent feature when the molecule diffuses in a
twisted phase (such a factor approaches to unity when L/p tends to vanish). For a given
orientational equilibrium distribution, the specific form of the function F' is determined by
the structure of the diffusion matrix and by the sign and relative magnitude of its elements
(that is, ultimately, by the geometric aspect the molecule). Only full numerical calculations
can supply the specific form of function F' and this has been, as a matter of fact, our effort
in this work. However, with reference to the archetype molecules here considered, it emerges
that i) the deviation of F'(L/p) from unity is mainly determined by the argument L /p itself
(i.e., the size of the molecule does matter more than its aspect), and ii) the function F
depends weakly on L/p. In other words, a relevant feature which affects the magnitude of
modulation of the diffusion coefficient is the comparison between molecular size and pitch:
quantitative deviations from the limit value in the nematic phase are achieved only if linear
extension of the molecule and pitch become comparable.

In particular, this evidence might guide the design of proper phases to be exploited in the
discrimination between geometric enantiomers in microdevices. Even if with our model cal-

culations we pointed out that it might be difficult to obtain the separation in practice, recent
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development of new short-pitch chiral materials could change the perspective[17, 18] in favor
of what is certainly a most important objective. Along this line, we are currently interested
in quantifying the degree of discrimination between the enantiomers of helical necklace-like
molecules, made of linked spheres, diffusing in a twisted phase of pitch comparable with the

molecular length.
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ELLIPSOID

order parameters

e/A=2 | pitch/A | (R3,)pr  (Rio)ow  (R3,)pe  (R3,)pe

0 0.6079 0 0 0
1.8 x 10-2

810 500 | 0.6071 —7.4 x 105 0 0
33%x102 | oo 0.8018 0 0 0

diffusion matrix elements

DMF) . = (DMF),, =254 x 1077 cm?s~!

(D7)
(D) ,, =313 x 1077 cm?®s™!
(Dit )
(Dt )

D) ox = (DEE),y =188 x 107 57!
MF

ZZ

TABLE 1. Parameterization of the elipsoidal molecule employed in the calculation of

Dmt(uhm)-
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BENT ROD

order parameters
co | (Rio)pr (R3g)prr  (R§s)per  (R3.)pE
—2.50 0.6060 0 0.03528 0

diffusion matrix elements

(DY) o x =210 x 1077 cm?s™

(DY), =186 x 1077 cm?s™*

(D¥F),, =3.08x 107" cm?s~!

(DYE) o =239 x 107 57!

(DER)yy =263 x 107 s7!

(DA ,, = 1.50 x 10% s~

(D¥F)y, = (DEF) ,p = =581 x 107" cms™!

TABLE 2. Parameterization of the bent-rod molecule employed in the calculation of

Dmt(uhm)-
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SCREW PROPELLERS % = £30°

order parameters
co | (Rgo)or (R3o)pr  (Rio)pr  (R3.)pEr
3.90 | 0.6008 0 -0.08700 0

diffusion matrix elements

MF
DRT

MF
DRT

vx = F9.60x 107" cms

vy = T5.60 x 107! cms™!

(DMF) ¢ =291 x 1077 cm?s™
(D¥F)yy =356 x 1077 cm?s™
(D) ,, =388 x 107" cm?s™!
(DXF) 5 = 3.56 x 107 s
(DEE ) yy =291 x 107 57!
(Diit) 22

(

(

)
)
), =155 x 10% 57!
)
)

TABLE 3. Parameterization of the two-disks screw propeller (the two enantiomers) em-

ployed in the calculation of D, (up,).
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FIGURE CAPTIONS

FIG. 1. The employed reference systems of axes: the Molecular Frame (MF), the Laboratory
Frame (LF), the Director Frame (DF), and the second director frame (DF’). A left-handed

twisted phase is depicted.

FIG. 2. The molecular frame (MF) axes, the location of the Center of Diffusion (CD) and

the geometrical parameters for the ellipsoidal (prolate spheroid) molecule.

FIG. 3. The molecular frame (MF) axes, the location of the Center of Diffusion (CD) and

the geometrical parameters for the bent-rod molecule.

FIG. 4. The molecular frame (MF) axes, the location of the Center of Diffusion (CD) and

the geometrical parameters for the two enantiomers of the screw-propeller molecule.

FIG. 5. Effect of the phase biaxiality induced by the director’s twist on the diffusion coeffi-
cient along the helical axis. The profiles are referred to the ellipsoidal molecule. Open circles:
calculations performed accounting for the twist of the director on the orientational potential.
Full circles: calculations performed without accounting for the twist of the director on the

orientational potential. See Table 1 for the employed parameters.

FIG. 6. Effect of the order parameter P, = (R ) pr on the diffusion coefficient along the
helical axis. The profiles are referred to the ellipsoidal molecule. The coefficients are scaled
with respect to their value at infinite pitch, D, (Us,)e. Open circles: P, = 0.80. Open

squares: P, = 0.60.

FIG. 7. Effect of the slowing down of the rotational motion about the short axes of the
ellipsoidal molecule. Full circles: calculations performed with all the diffusion matrix el-
ements in Table 1. Open squares: calculations performed with the (D}{),, given in

Table 1 but the transverse rotational diffusion coefficients reduced by a factor 10, i.e.,
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(DR ) xx = (DR ) yy = 1.88 x 10° 571

FIG. 8. Pitch dependence of the diffusion coefficient along the helical axis for the bent-rod

molecule.

FIG. 9. Pitch dependence of the diffusion coefficient along the helical axis for the two

enantiomers of the screw-propeller molecule.
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FIG. 5
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FIG. 6
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FIG. 9
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