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The Lebwohl-Lasher model of nematogens consists of a system of par- 
ticles placed at the sites of a cubic lattice and interacting with a pair potential 
Ui, = -&..P2(cos /Iij), where cij is a positive constant, E, for nearest neigh- '? 
bours particles i and j and Pij is the angle between the axis of these two 
molecules. We have investigated this model using Monte Carlo simulations 
with periodic boundary conditions on a 30 x 30 x 30 lattice while the largest 
system previously studied was 20 x 20 x 20. The number of simulation runs 
near the transition is also significantly higher than in previous simulations to 
allow a more precise determination of the orientational transition tem- 
perature T;,. The transition temperature has been placed at kT/ 
E = 1.1 232 f 0.0006, refining previous estimates. Orientational order 
parameters (P,), (P,) have been calculated and a new algorithm is proposed 
for the computation of (P4). Particular attention has been devoted to 
pretransitional properties. Pair correlations G2(r), G,(r) as well as the second 
rank g2-factor are reported. g, is found to diverge at a temperature T;,. = 

kT/& = 1.1201 f 0.0006 and to fit the Landau-de Gennes behaviour except 
near the transition. Our results indicate therefore that the Lebwohl-Lasher 
model can yield the small difference between the nematic-isotropic transition 
temperature and the isotropic phase limiting instability temperature without 
the need of introducing additional terms in the potential. 

1. INTRODUCTION 

I n  the Lebwohl-Lasher (LL)  model [I-111, a system of uniaxial particles 
placed at the sites of a cubic lattice interacts through a nearest neighbour pair 
potential of the form 

where cij is a positive constant, E ,  for nearest neighbours particles i and j, P2(x) is 
a second Legendre polynomial and pij is the angle between the axis of these two 
molecules. From a formal point of view (1) is a simplified version of the attractive 
anisotropic interaction put  forward by Maier and Saupe [9] and is sometimes 
referred to as Maier-Saupe model. T h e  Lebwohl-Lasher (LL)  model has become 
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a prototype for computer simulations [I-81 and theoretical calculations [9-171 on 
systems which undergo a nematic-isotropic like orientational phase transition. In 
this sense its role is somewhat similar to that covered by the Ising and Heisenberg 
models in the field of magnetic phase transitions [la-211. However, the number 
of computer simulations and rigorous studies on the LL model is still a minute 
fraction of what is available for magnetic systems. T h e  computer simulations have 
been performed using the Monte Carlo method on systems of various size, from 
10 x 10 x 10 [4] to 20 x 20 x 20 [I, 3, 71 and the molecular dynamic method on 
a 10 x 10 x 10 lattice [S]. A larger size system of 50 x 50 x 50 has been studied 
[2], but only with an approximate technique and with a quantization of the 
orientations permissible to a molecule to just 128. T h e  20 x 20 x 20 LL lattice 
mentioned above has been studied by three different groups [I ,  3, 71. T h e  system 
has been found to give a phase transition with a weak first order character. T h e  
nematic-isotropic transition temperatures Tg, reported from these studies are 
1.1 24 [I], 1.1 19 [3], 1.1 27 [7] in dimensionless units T* = k T / e .  It  is somewhat 
paradoxical that computer simulations on such a well defined system should give 
uncertainties of the order of 0.5 per cent in T:, . This uncertainty, seemingly 
small at first sight, would correspond to something of the order of 1.5 to 3 K in a 
real life experiment on a typical room temperature nematic. Thus it seems that 
computer calorimetry cannot offer the kind of resolution obtained experimentally 
which is of the order of l o p 2  K in routine high resolution measurements and 
below l o p 3  K for studies of phase transitions and pretransitional properties [22]. 
The  situation is also very different from that of Ising spin lattices, where arrays 
up to 1080 x 1080 x 1080 have been studied [18]. This is due not only to the 
long history and importance of the Ising model, but also to the fact that it is 
obviously much easier to study a system of spins with just two possible orienta- 
tions. In particular the fact that the state of an Ising spin can be represented with 
just one bit has encouraged the use of special data structures and multispin coding 
techniques [I81 which are unfortunately not suitable for the study of continuous 
variables. In any case it seems that larger systems, better boundary conditions [5] 
etc. need to be used if the nematic-isotropic transition and its critical exponents 
are to be studied in detail. T h e  purpose of the present work is to report results of 
a series of Monte Carlo experiments on 30 x 30 x 30 lattices in a temperature 
region close to the transition. We shall concentrate in particular in getting a better 
estimate of the transition temperature and of the other relevant observables near 
the transition. We shall also be interested in studying pretransitional behaviour of 
order parameters and pair correlations [6, 23-24]. This is necessary if we are to 
ascertain whether the LL model contains the basic ingredients to describe the 
subtleties of the nematic-isotropic transition. One particularly striking point is 
the experimental observation that the difference D* between the nematic- 
isotropic transition temperature and the temperature TiI* where the isotropic 
phase becomes absolutely unstable is very small, i.e. about 1 K [24-251. Despite 
numerous attempts, present theories have been unable to quantitatively explain 
this observation. A Molecular Field treatment [14] gives a value thirty times 
bigger than the observed one. This poor estimate is improved, but not sufficient- 
ly, by two-, three- and four-site cluster extensions [IS]. Renormalization group 
techniques [I71 also seem to fail to ~ r o v i d e  the small experimental D*. I t  has 
been suggested that this is due to a fundamental insufficiency in the I,L model 
and that in order to explain the observed D* one should consider additional 
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biaxial terms in the potential [26]. It is important to see if a simulation study of 
the LL model, which yields essentially exact results, is able to produce the funda- 
mental quantity D*. Here we shall offer some evidence that this is the case for our 
simulation. 

All the calculations reported in this paper have been performed on a 
30 x 30 x 30 cubic lattice system with periodic boundary conditions. The par- 
ticles are assumed to interact through the nearest neighbour LL potential in 
equation (1). The standard Metropolis Monte Carlo algorithm [4, 18-19] has 
been used to generate equilibrium configurations. The simulation at the first 
temperature studied (T* = 1.00) was started from a completely aligned system. 
The simulations at the other temperatures have been run in sequence starting 
from an equilibrium configuration at a nearby lower temperature. The orientation 
of each particle is stored as cos fi and a, where /3 and a are the polar and azimuthal 
angles of the symmetry axis of each particle. The configuration of the system is 
given by the set of N such orientations {ai, fii) where N is the number of par- 
ticles. We move one particle at a time and we shall call a cycle a set of N 
attempted moves. A new configuration is generated by choosing a particle at 
random out of those that we have not yet attempted to move during the current 
cycle [27]. T o  this end a simple random shuffling algorithm is used [28]. This 
procedure ensures that every particle gets an equal chance of moving at every 
cycle, while removing the unnecessary regularities in particle selection. The 
orientation of the chosen particle is then changed by generating a new random 
value of the variable cos fi and a. We are close enough to the transition tem- 
perature to get a satisfactory rejection ratio even with these possibly large orienta- 
tional jumps. In every simulation a minimum of 3000 cycles are used for 
equilibration and thus rejected when calculating averages. Near the transition, i.e. 
from T* = 1.123 to T* = 1.124 at least 10000 cycles are rejected and runs up to 
70000 cycles follow. Equilibration is checked by monitoring fluctuations in the 
observables; plots of these quantities versus the number of cycles are not reported 
for reasons of spaces but are available from the authors. The simulations are 
divided in M trajectory segments of 1000 cycles each. Errors in the observables at 
a certain temperature are evaluated from the standard deviation from the average 
in these M computer experiments. 

The running of large scale Monte Carlo simulations requires generating a 
considerable number of random variables. For our systems we need many mil- 
lions of random numbers at each temperature. These are produced using the 
RANF routine available on the CRAY with some precautions briefly discussed in 
what follows. In linear congruential algorithms like that adopted in the RANF 
routines [29] a new pseudo-random number x , + ~  is generated by the previous 
one through the simple relation [28] 

xn + , = axn mod 2P 

where a is a suitable multiplier and the recurrence is started from a proper 
seeding [29]. This procedure may cause various problems. The method will 
intrinsically lead to the same sequence after a maximum cycle length of 2 P ,  where 
p is the number of bits available. In the CRAY X-MP/l2 used here we have a 48 
bit integer mantissa (as in the CDC 176) so p = 48. The size periodicity is there- 
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fore not our main problem on this machine. Problems with generators like equa- 
tion (2) are relatively more severe when the random numbers are employed in 
pairs or triplets to determine the particles orientation [28]. This same generator 
has in particular caused problems when applied with vectorized algorithms to 
large Ising lattices whose linear size is a large power of 2 [30]. In [30] 
128 x 128 x 128 spins were treated and large groups of random numbers chosen 
together and employed sequentially. We have decided to reduce the risk of short 
range correlations between random numbers by using the algorithm of Bays and 
Durham as described in Knuth's book [28]. In essence we proceed by filling an 
array of size 1024 with random numbers produced with the RANF generator. 
Then another random number yi is generated with RANF. This is used, taking 
its value modulo the array length, to pick up the next number which is actually 
going to be used from the array. This number is then replaced by y i  itself in the 
array. This scrambling is expected to produce a "considerably more random 
sequence" than the original one [28]. 

3. OBSERVABLES AND THEIR CALCULATION 

3.1. Generalities 

Every observable of interest A is sampled at every cycle. After a certain 
number of cycles (here 1000) an average is calculated thus coarse graining the 
trajectory. A further grand average over M such segments is then calculated 

(A) = (1 IW 1 AJ 
J 

(3) 

together with the attendant standard deviation aA . We have also calculated histo- 
grams of the frequency of occurrence of a certain value AJ during the simulation 
by sorting the M observed samplings in a suitable number of buckets. As we shall 
see this will be especially useful in order to investigate the neighbourhood of the 
transition. 

Energy The energy for the lattice system with periodic boundary conditions is 

.. .. 

UN = - (112) 1 cijP2(cos Pij) ; with i # j 
j=1 

where x = 6 is the coordination number and a 2  = (P2(cos /jI2)) is a short range 
order parameter averaged over neighbour particles. 

The results of the simulation for the dimensionless single particle energy 
U* = (U)/NE at the various reduced temperatures T* = kT/c studied are shown 
in figure 1. We see clearly that a sharp change of slope occurs suggesting the 
onset of a first order transition. We have also calculated histograms of the fre- 
quency of occurrence of a certain value of the energy P(U*). In general the 
histograms consist of extremely narrow peaks, but their behaviour becomes par- 
ticularly interesting near the transition. Since it is difficult to present graphical 
data for all the histograms, we have chosen, for the sake of brevity, to tabulate 
some of their most important statistical parameters. We have calculated the first 
four cumulants of P(U*) and obtained the results reported in table 1. We remem- 
ber that the cumulants k, [31] of a distribution f (x) are related to the moments of 
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Figure 1 .  The single particle energy U* = (U)/Nc vs dimensionless temperature 
T* = kT/& for the Monte Carlo simulation of the 30 x 30 x 30 Lebwohl-Lasher model. 

Table 1 .  The first four cumulants, k , ,  k, , k ,  , k4 of the distribution P(U*) of the energy 
values observed during the simulations. 

T* k I k 2 x l O 3  k 3 x 1 o 5  k 4 x 1 0 6  

1.1140 -1.0851 0.552 0.182 0.006 
1.1 160 - 1.0650 0.447 0.092 -0.032 
1.1180 -1.0562 0.370 0.211 -0.039 
1.1200 -1.0225 0.460 -0.025 -0.039 
1.1210 -0.9939 0.797 -0.183 -0.119 
1.1220 -0.9614 1.991 2.327 -3.992 
1.1230 -0.9558 1.258 1.998 -0.284 
1.1235 -0.9626 1.500 1.960 -0.997 
1.1238 -0.9249 1.425 - 2.506 - 1.287 
1.1240 -0.8959 0.917 - 3.085 1.276 
1.1250 -0.8817 0.367 -0.181 -0.015 
1.1 260 -0.8709 0.264 -0.106 0.000 
1.1270 -0.8656 0.185 -0.032 -0.005 
1.1280 -0.8651 0.3 17 - 0.45 1 0.103 
1.1290 -0.8563 0.205 -0.056 0.010 
1.1300 -0.8503 0.135 0.037 0.004 
1.1320 -0.8450 0.138 - 0.020 - 0.005 
1.1340 -0.8382 0.152 -0.019 0.006 
1.1360 -0.8309 0.130 0.007 -0.004 
1.1380 -0.8261 0.131 - 0.041 0.001 
1.1400 -0.8192 0.123 - 0.026 0.004 
1.1600 -0.7752 0.086 0.002 0.001 
1 .I800 -0.7406 0.073 - 0.006 0.000 
1.2000 -0.7122 0.068 0.001 0.000 
1.2500 -0.6547 0.053 - 0.002 0.000 
1.3000 - 0.6095 0.046 -0.001 0.000 
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the distribution. In particular for the first four cumulants of interest here we have 
for the generic variate x  

k ,  = ( x ) ,  ( 5  a )  

where m, is the nth central moment 

m, = 1 ( ~ b  - ( x ) ) " P ~ ,  
b 

(6) 

and pb is the population of the histogram at bucket b. We recall that for a gaussian 
the first cumulant gives the centre and the second the width, while cumulants 
above the second are zero. Inspection of table 1 shows that k 2 ,  i.e. the width of 
the peaks near the transition becomes about twenty times larger than that of the 
peaks in the isotropic phase. In the same region the third cumulant significantly 
differs from zero and changes sign, going from positive below the transition to 
negative. T h e  fourth cumulant illustrates the gaussian character of the peaks as 
soon as one moves from the transition. In figure 2 we report some of these 

Figure 2. Histograms of the distribution of energy values obtained during the simulation 
for four temperatures T* in the transition region. 
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histograms in the transition region (1.121 to 1.124). Here we do not just observe 
an overall shift, but rather we see indications of the double peak behaviour 
expected for a first order phase transition [I]. T h e  intensity of the two peaks 
changes with temperature showing that the transition is situated in this relatively 
narrow range. 

3.2. Heat capacity 

T h e  heat capacity of the system C$ has been evaluated by differentiating U* 
with respect to T*. This is done by first fitting a smoothing cubic spline to the 
data points (ICSSCV from I M S L  [32]) then taking the derivative. We have not 
broken the temperature interval in two regions and fitted separately, since this 
would somehow amount to assuming beforehand a true first order phase tran- 
sition. We know from magnetic system studies [18-21, 331 that our system will 
mimic the occurrence of such a phase change by exhibiting a sharp change in the 
slope of the energy vs. temperature curve. These results are shown in figure 3 as 
the continuous curve and the values of C$ at the experimental temperatures are 
reported in the general summary table in the Appendix. Errors in C$ reported in 
the Appendix have been estimated by the uncertainty in the energy repeating the 
differentiation procedure. We identify the orientational transition temperature 
with the position of the heat capacity maximum and find the value Tg, = 1.1232 
& 0.0006. 

Based on this value for the transition temperature and on the previously given 
energy histograms, we estimate the entropy change as 

We also notice that the heat capacity peak is asymmetric and much steeper on the 
hot side of the transition. T h e  temperature resolution of our data is really not 

Figure 3. T h e  heat capacity C$ obtained from differentiation of energy vs T* as 
described in the text (continuous curve). Values corresponding to the actual simula- 
tion temperatures T* are also shown as the symbols. 
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sufficient to get very precise estimates of the exponents. However, it seems inter- 
esting to obtain some approximate estimates. An estimate of the heat capacity 
exponents has been obtained by a non-linear least square fit of C t  to the following 
expression [IS, 331 

We use data for T* above 1.124 to limit the rounding due to the finite sample size 
and to the numerical differentiation through splines and assume T;, as previously 
determined. We find that our data can be fitted using A = 0.363, B = -1.44, 
cc = 0.596. We recall that experimentally values of a very close to 0.5 have been 
found [22]. Fits on the cold side of the transition are not reported because of the 
small number of data points available. 

3.3. Second and fourth rank order parameters 

The determination of orientational order parameters is an important part of a 
model liquid crystal simulation, albeit by no means a trivial one [4]. The major 
difficulty stems from the overall rotational symmetry existing in the system [34] 
in the absence of external fields and when using periodic boundary conditions 
[S]. This symmetry somewhat conflicts with the possibility of defining order 
parameters ( P L )  for a molecule with respect to a uniform director, i.e. as 

for L even, where f l  is the orientation of the particle axis with respect to the 
director and P(cos 8) is the singlet orientational distribution. During the simula- 
tion the director may fluctuate from one configuration to the next and thus the 
order parameter is normally calculated with respect to the instantaneous preferred 
direction. Here we briefly summarize the evaluation of this second rank order 
parameter ( P z ) ,  to prepare the ground for introducing an algorithm for the 
computation of the fourth rank order parameter. 

The determination of order parameters in the simulation can be viewed as an 
idealized experiment. We consider a single molecule property A  = q x q, with 
q = (001) being a vector directed along the z molecular axis. As an example the 
properties A, q could be thought of as a transition tensor and respectively a 
transition moment in a certain fluorescence depolarization experiment [35]. The 
average (. . .), over the N sample particles of A  will be 

in the laboratory frame used to define orientations during the simulation. 
Here R is the orthogonal matrix rotating from the laboratory to the molecule 

frame and we have taken advantage of the fact that Ayj = 6,,,dj,, . Diagonal- 
ization of the matrix ( A L ) ,  locates the sample director frame (D). We shall take 
the instantaneous director to be parallel to the direction 2, defined by the eigen- 
vector associated with the largest eigenvalue of A. We can now obtain the second 
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rank order parameter since 

where U is the matrix rotating the laboratory into the director frame (i.e. the 
matrix of eigenvectors of (AL),) and the angle p gives the orientation of the 
molecule axis in the director frame. This procedure corresponds to the well 
known method for determining (Pz) with respect to the instantaneous director 
from a simulation in a nematic-like phase [4, 34, 361. There are problems above 
the isotropic phase transition where the director is loosely defined [8, 361 but no 
particular problem arises in the ordered phase. In practice the (AL), matrix is 
calculated and diagonalized at every cycle and its largest eigenvalue is used to give 
the order parameter for the system with respect to the instantaneous director. 
This is then averaged (cf. equation 3) to produce the values (P2), denoted by 
asterisks in figure 4. The  curve looks fairly continuous although very rapidly 
changing in the transition region. T h e  derivative of (P2)1 VS. temperature pre- 
sents in fact a very sharp negative peak with a minimum of about -40 at 
T* = 1.1237. If we take this as the long range order indicator of where the 
transition occurs, we see that it agrees very well with the short range order 
indicator provided by the heat capacity. T o  examine more closely the behaviour 
of the order parameter it is useful to look at histograms of the frequency of 
occurrence of a certain (P2) during the simulation. As we did for the energy we 
shall first condense a description of all these histograms in terms of cumulants 
(see table 2). Inspection of the cumulants in table 2 shows that the peaks are 
essentially gaussian except in the region from T* = 1.1220 to 1.125. In this range 

Figure 4. The second rank order parameter (P2) at temperatures T* as obtained through 
the diagonalization procedure described in the text. We report the order parameter 
evaluated from the largest eigenvalue (stars) and from the intermediate one [36] 
(open circles). 



U. Fabbri and C. Zannoni 

Table 2. T h e  first four cumulants, k, ,  k 2 ,  k 3 ,  k4 of the distribution P ( ( P 2 ) , )  of the 
second rank order parameter values observed during the Monte Carlo simulations at 
temperatures T*. 

the third cumulant and thus the skewness [31] of the distribution change sign 
reflecting the change in the type of order parameter from a nematic-like to an 
isotropic like. T o  illustrate this point we show in figure 5 four histograms of ( P , )  
in the transition region. The distribution of (P , )  which is used to give the points 
in figure 4 changes quite abruptly across the transition, in accord with its 
expected first order character. Notice that ( P z ) ,  does not go quite to zero above 
the transition, but rather to a value of the order of N-'I2. Eppenga and Frenkel 
[36] have suggested that a better estimate of the order parameter in the isotropic 
phase can be obtained by looking at the intermediate, rather than the largest 
eigenvalue of the matrix (AL)s as defined in (9). We have argued elsewhere [8] 
that the root of the problem is conceptual more than numerical and is connected 
with the absence of a bona-fide director above the orientational transition. In any 
case in figure 4 we also show as the empty circles the values of this new order 
parameter, called here ( P 2 ) a 2 ,  near and above the transition and we see that they 
do approach zero more closely than ( P , ) ,  . Histograms for this order parameter 
have also been recorded. The behaviour of the P((P, ) , , )  histograms is essentially 
the same as those of ( P z ) ,  so we shall only report their statistical parameters in 
table 3 .  We notice that above the transition the skewness of the distribution of the 
order parameter calculated according to Eppenga and Frenkel is smaller than that 
of the P((P, ) , )  distribution. This is of course to be expected since (P2 )a2  can 
fluctuate around zero, while ( P , ) ,  is always non negative. From the histograms 



MC study of orientational ordering in liquid crystals 773 

Table 3. The first four cumulants, k ,  , k , ,  k 3 ,  k ,  of the distribution P((P,),,) of the 
intermediate eigenvalue [36] second rank order parameters observed at various 
temperatures r*. 

we estimate the two order parameters at the transition to be 0.27 and 0.25 for 
(P,), and (P,),, respectively. 

We now turn to an algorithm for the determination of the fourth rank order 
parameter (P4). T o  this end let us consider the fourth rank tensor F, where 
F = A x A, the direct product of the second rank quantity A introduced earlier 
on. The sample average of F in the laboratory frame is related to that in the 
director frame previously defined through a similarity transformation employing 
the matrix U of the (AL), eigenvectors 

The average of F in the director frame is related in turn to the molecule fixed 
components as 
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Figure 5. Histograms of the distribution of second rank order parameters (P,), obtained 
during the simulation at four temperatures T* in the neighbourhood of the tran- 
sition. 

Since FM is a constant and F;kl = Siz Sjz Skz Slz , the component FZzzz in the direc- 
tor frame of this tensor becomes 

(F;zzz)s = ((Rzz)4)s, 

= (c0s4 ( 1 3 )  

which can be used, together with (P,), to determine (P4)S. 

The relevant component in the director frame is determined by first calculating at 
every cycle the sample average of the tensor F in the laboratory frame as 

(Ft;bcd )S = (qa qb (IC qd)s (1 5)  

then rotating to a director frame employing the previously determined eigen- 
vectors matrix of A. 

<F;ZZZ)S = U a ~  U b ~  U c ~  UdZ<Fkbcd)S ( I6 )  
a, b, c, d 
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This quantity is then averaged over the cycles to produce the calculated 
(P,),. Notice that, differently from a previously proposed algorithm [4] the 
present one preserves the information about the sign of (P,). We do not actually 
expect a negative fourth rank order parameter for the Lebwohl-Lasher model but 
this coulci be the case for other more complex interactions, so the possibility 
should certainly be allowed for. This is particularly important in view of the 
debate about the sign of (P,) which has followed some experimental determi- 
nations of negative values of (P,) [37]. The values for the fourth rank order 
parameter obtained for our simulation are reported as a function of temperature 
in figure 6. The distribution of the fourth rank order parameters values observed 
in the course of the simulation has also been determined and in table 4 we 
reproduce a summary of the results. The  histograms of (P,), in the transition 
region show a clear two peaks behaviour (cf. figure 7). We estimate (P4), at the 
transition to be 0.04, both from inspection of the histograms in figure 7 and from 
figure 6. 

In figure 8 we plot our results for ( P 4 )  against ( P 2 )  since there are definite 
predictions in the literature for this curve. We report first (curve A) a simple 
approximation proposed by Faber [I61 i.e. (P,) = (P2)'013. This relationship 
follows from its proposed continuum theory of disordering by fluctuations in a 
lattice model like the present one. The  relation has a strikingly simple form and 

Table 4. The first four cumulants, k l  , k, , k ,  , k4 of the distribution P((P,),) of the 
fourth rank order parameter values observed during the Monte Carlo simulations at 
temperatures T*. 
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Figure 6 T h e  fourth rank order parameter (P,)A obtained as described in the text plotted 
vs. temperature T*. 

Figure 7. T h e  distribution of fourth rank order parameters (P,), occurring during the 
simulations at a few temperatures in the vicinity of the orientational transition. 
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Figure 8. The fourth rank order parameter ( P , )  plotted versus the second rank one 
( P , ) .  Here the open squares are the simulation results for (P,), Curve (A) is 
(P,)"0'3' as from Faber's theory 1161. Curve (B) is obtained from mean field or in 
general from the distribution in equation (17). Curve (C) is the simple approx- 
imation +(P,)' to curve ( B ) .  

represents ( P , )  VS. ( P 2 )  well when the order is high [16]. Here it is definitely 
lower than the experimental values, although it starts to approach them at our 
higher values of ( P 2 )  i.e. 0.6. A molecular alternative to obtaining a relation 
between ( P , )  and < P 2 )  requires an orientational singlet distribution. In particu- 
lar we consider the single particle distribution (see, e.g., 14) 

where Z(a,) is a normalization factor. In mean field the coefficient a ,  is a ,  = 

( z / T * ) ( P , )  for the present model, with z = 6 being the coordination number. 
However, a second rank effective potential like that implicit in equation (17) 
could be obtained by other means. For example this particular form can be 
deduced by constructing the maximum entropy [38] singlet distribution from 
( P 2 )  information or by truncating some general expansion of the unknown true 
potential of mean torque at the first non trivial term. In any case, given this 

distribution, ( P , )  and ( P , )  can be obtained as functions of the interaction 
strength parameter a2 by applying equation (8) for both L = 2 and L = 4. Elimi- 
nation of the parameter a2 between the resulting equations for ( P 2 )  and ( P , )  
then yields the universal curve plotted as (B) in figure 8. This curve is unfor- 
tunately not susceptible to a straightforward analytical formulation. We can, 
however, obtain a simple approximation as follows. First a series expansion of a ,  
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in terms of (P,) gives 

The  series is of course divergent at (P,) = 1, since we know that getting (P,) = 
1 requires a,+ co but it can still be used [39] for our purposes for the present 
range of order parameters. It is interesting to note that the trivial first term, 

is a simple approximation with an error of less than 30 per cent for (P,) smaller 
than 0.4 i.e. for order parameters not too far from the transition. Expanding (P4) 
in terms of a, (up to order seven here) and substituting a, from (18) gives a series 
for (P4) in terms of (P,) 

The  series contains large terms of alternating sign and is poorly convergent unless 
terms are properly grouped together [39]. The  very simplest grouping consist of 
retaining just the first term, 

which actually gives quite a good approximation to curve (B) at least up to order 
parameter (P2) = 0.6. This approximation is reported as curve (C)  in figure 8. 

3.5. Pair properties 

The  rotationally invariant pair distribution G( r I2 ,  a,,) [8, 231 determines the 
probability of finding two particles at distance r12 with a certain relative orienta- 
tion w,,. I t  is convenient to expand G(r12, wlz) in a series of Legendre poly- 
nomials as 

for even L, where G;O(r,,) is a purely scalar radial distribution and the expansion 
coefficients define two-particles order parameters. These in turn give the correla- 
tion between the orientation of two particles separated by a distance r I 2 .  

G~(r12) = [1/G;0(r12)l do ,  d o 2  G(r12 , w12)PL(cos PI,) S 
For our lattice system the particle positions are fixed and the centres distribution 
is just 
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where p is the number density and the sum runs over successive shells containing 
zk neighbours at distance rk from the central particle. Here r is in lattice units. 

We have calculated the angular pair correlation coefficients GL(r)  [6] for rank 
L = 2 and 4. In figure 9 ( a )  (6)  we show G 2 ( r )  and G4(r )  for a number of tem- 
peratures from T* = 1.05 to 1.20 of the 30 x 30 x 30 system. When using period- 
ic boundary conditions, every distance dependent property is determined modulo 
the box length so the correlations grow for distances exceeding half the box 
length. Here we show the curves for r starting from the nearest neighbour dis- 
tance up to two thirds of the box length to show the relative unimportance of the 
build-up at these distances. The pair coefficients G,(r)  should start from one and 
tail off to essentially ( P L ) 2  in the nematic phase [8]. We have checked that this is 

- 

indeed the case for our simulation. The  various curves are plotted together to 
yield an overall impression of the temperature-distance surface and the trivial 
starting point GL(0) = 1 has been omitted for clarity. The build-up of the orienta- 
tional correlation when approaching the transition from above is quite visible and 
will be examined in detail. In figure 10 we plot a number of sections of the G2(r )  
vs. temperature surface at selected distances. A line joining the points is drawn as 
a guide to the eye. The various curves show the difference in the permanence of 
short range order at nearest neighbour distance (squares) even above the tran- 
sition and the rather fast approach to long range type behaviour when the inter- 
particle separation exceeds five or six lattice spacings. As seen from equation 22 
the correlation coefficients GL(r )  represent the first few terms in the pair distribu- 
tion expansion. Even though the distribution in itself may be slowly convergent, 
the first few coefficients cover an important role, as we can see by considering a 
generic pairwise additive property A, 

where A ( r i j ,  oij) is a function of relative orientation and position between two 
particles. In particular, if the quantity A is a sum of a finite number of terms of 
different rank J 

the average of A is just 

where zk is the number of neighbours at a distance r, from the particle at the 
origin. As a simple special case we recover the average energy equation (3 6 ) .  We 
shall employ the correlation coefficients in investigating pretransitional behaviour 
in our system. 

3.6. Pretransitional behaviour 

Large ordering effects are known to take place in nematogen materials above 
the isotropic transition. These pretransitional effects are of great importance in 
liquid crystals and have been observed, e.g. through electric [40] and magnetic 
[23] birefringence as well as by light scattering [41]. A particularly neat demon- 
stration through N.M.R. detected magnetic field effect has been recently given by 
the Southampton group [42]. An N.M.R. detected Kerr effect has been reported 
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(b)  
Figure 9. (a)  The  spatial correlation function G2(r )  at various temperatures below and 

above the transition. Here we show results for a range of temperature T* as indi- 
cated on the graph. T h e  distance r  is measured in lattice units. ( b )  T h e  fourth rank 
correlation G4(r) at the same temperatures. 
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Figure 10. Sections of the G,(r ,  T*) surface at six selected distances r = a.  Here a = 1 
( O ) ,  1.4 (O), 1.7 (a), 2.4 (+), 3.7 ( x  1, 5.9 (0). 

by MacLean et al.  [43]. A particularly significant finding in all these experiments 
is that the temperature of divergence of these pretransitional effects is not the 
transition temperature but a slightly lower one T&*. The conventional wisdom is 
that a hypothetical second order phase transition, which would occur at T&, , is 
preempted by a first order transition. Here we wish to study pretransitional 
effects through simulations and we start by obtaining the relevant equations for 
the susceptibility, in the isotropic phase and introduce the prescription we have 
used for its computation. We consider the ordering induced by a uniform field 
which contributes to the system hamiltonian a perturbation term H', 

where B' is the intensity of the field, e.g. magnetic and 1, represents the effec- 
tiveness of coupling between the field and each molecule with orientation Pi. We 
assume a uniform field with 1, constant and a second rank anisotropic part 

N 

4 = 1 Pz(c0s Pi). 
i =  1 

The order parameter in the presence of the field is 

where dX is the orientational volume element and Z(T, B) is the configurational 
integral normalizing the right hand side of equation (30 b) .  In a linear regime the 
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order parameter induced by the field is just proportional to the strength of the 
applied field itself through a susceptibility K, i.e. 

where the field susceptibility K is the derivative 

evaluated at zero field. The  susceptibility can thus be rewritten as 

T o  obtain equation (33 b) we have used the fact that in the isotropic phase the 
unperturbed order parameter is zero. The  two particle average in equation (33 b) 
can be rewritten in terms of G2(r) using equations (27) and (22). Thus we obtain 

(P2(cos P,)P,(cos P2)) = ( l / W  dr12 dm12 G(r12 > o,,)P,(cos /31)P,(cos P,), S 
(34 a)  

where the coefficient g2 is defined as the zero field average 

The  susceptibility K then becomes 

The quantity g2 contains the molecular information on the existing orientational 
pair correlations and is sometimes called a second rank Kirkwood coefficient 161 
by analogy with the first rank dipolar correlation coefficients introduced in the 
study of dielectric properties [44]. For our lattice system g2 can be conveniently 
formulated using equation (24) for GgO(r). We find 

which is the expression we have actually used to compute g2 from our simulation 
data. The  divergence temperature can then be determined by fitting T*/g2 vs. T* 
[6]. Truncating the sum at rk = 15, a good linear fit with a correlation coefficient 
of 0.997 is obtained. The  intercept gives the divergence at Tg,* = 1.118 + 0.004. 
Evaluation of g2 through the sum formula in equation (37) has the advantage over 
direct summation over the whole sample [6] that spurious contributions to g2 due 
to the build up of the correlation at distances comparable to the box length are 
controllable by suitably truncating the sum. However, the number of neighbours 
increases quadratically with distance and it is worth checking if the results are 
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dependent on the arbitrary cut-off distance imposed. This was found to be an 
important factor in determinations of g2 for relatively small isotropic samples 
[45]. In order to try and eliminate this cut-off effect we have sought to use our 
data to determine the parameters ill a suitable analytic model for the distance 
decay of G 2 ( r ) .  If this can be done the analytic expression can then be used in 
conjunction with equation (37) to estimate the neglected tail contributions to g 2 .  
We have fitted various models for the decay of correlation with separation to the 
experimental G,( r )  for temperatures greater than 1.1238, limiting r to be smaller 
than a cut-off length of respectively 10, 15 and 20 lattice units. The  models 
ranged from a simple exponential decay to zero or to a plateau to the classical 
Ornstein-Zernike form [23, 461, 

A 
G 2 ( r )  = - exp ( - k c  r ) ,  (38) 

Y 

where kc has the meaning of an inverse correlation length. We have found the 
Ornstein-Zernike form to yield an excellent overall fit at the various tem- 
peratures. Moreover essentially the same parameters A and kc  are obtained from 
the different truncations assumed. The  results for the inverse correlation length 
kc are reproduced with different symbols (+, 0, X )  for the three truncations in 
figure 11. It is interesting to notice that an Orstein-Zernike form is expected 
theoretically and that Landau-de Gennes theory predicts that the correlation 
length squared should be linear in temperature. In figure 12 we show that this is 
indeed the case. The temperature of divergence of the correlation length is found 
to be in this way T* = 1.1222 + 0.009. As a further step we can now substitute 
the Ornstein-Zernike form for G 2 ( r )  in equation (37) and extend the sum up to 
arbitrary large distances until convergence fails. As a first check we have used the 
Ornstein-Zernike expression and truncated the sum at r = 15 and we have found 
that the results for the divergence temperature of g2 (P = 1.118) previously 
given are recovered. We have then considered distances up to r = 150. The g 2  
calculated in this way are of course independent of cut off. Using these values we 

Figure 11. The inverse correlation length kc as obtained by fitting the Ornstein-Zernike 
expression to the G,(r) vs. r data for T* greater than 1.1238. Fits for data up to 
reduced distances r = 10 ( +), 15 (0) and 20 (*) are shown. 
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Figure 12. T h e  square of the inverse correlation length kc (*) vs temperature plotted 
together with its linear regression line. 

can compute corrected values for T*/g, and by performing once again a linear 
regression in temperature (shown in figure 13) we find our final estimate for the 
divergence temperature 

T;,, = 1.1201 IfI 0.0006. 

Thus inclusion of long range corrections to g2 brings the divergence point nearer 
to the transition temperature. It was argued that the L L  model could not give 
these two temperatures close enough but this does not seem to be the case. 
Translating to real temperatures the difference in TN,  and T,,, for the Lebwohl- 
Lasher model is -- 1 K which is in agreement with experiment. 

Figure 13. Linear regression of the inverse g2 obtained from summation of the Ornstein- 
Zernike fitted expression, T*/g,  , vs. temperature T*. 
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We have determined the transitional and pretransitional properties of this 
important model of liquid crystals to an accuracy greater than previously possible. 
Our transition temperature is slightly less than that found by Lebwohl-Lasher 
[I] and Luckhurst and Simpson [7] in accord with the idea that in systems with 
periodic boundary conditions the transition is approached from above, so that 
going to larger systems lowers the temperature at which the heat capacity has its 
maximum. 

According to the simulation results the simple Lebwohl-Lasher model can 
provide all the important characteristics of the transition, including the correct 
order of magnitude of the deviation of Tg,, from the nematic-isotropic transition 
temperature. This is in our view a particularly significant result, which points to 
the need to refining the theoretical approaches employed to treat this class of 
problems. 

We are grateful to Dr. M. Lanzarini (CINECA) for his support to this project 
and to CINECA for the generous allocation of time on the CRAY which made 
this work possible. C. Z. thanks Min. P. I. and C. N. R. for financial support. 



APPENDIX 
Table A 1. A summary of our results for the Monte Carlo simulation on the 30 x 30 x 30 Lebwohl-Lasher model. Here N ,  is 

the total number of cycles in the simulation. The  symbols and the errors have been described in the text. 
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