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The Maier-Saupe theory for nematic liquid crystals provides a reasonable account of their orentational order and its
temperature dependence. The theory is based on second-rank anisotropic interactions and its predictions can be improved by
the introduction of higher-rank terms as in the Humphries-James- Luckhurst theory. However comparison with the properties
of real nematogens does not allow an unambiguous test of the theory because the form of the pair potential is unknown. This is
not the case for computer simulations where the intermolecular potential is defined. We have therefore undertaken a Monte
Cario study of the influence of fourth-rank interactions on nematic behaviour and report the results of our simulations here.
The model nematogen used as a reference is that developed by Lebwohl and Lasher in which the particles are confined to the
sites of a simple cubic lattice and interact via a second-rank anisotropic potential. The simulation gives the internal energy, the
heat capacity at constant volume and the second-rank order parameter as a function of temperature, as well as the
nematic—isotropic transition temperature. These results are used to provide the first unambiguous test of the
Humphries-James-Luckhurst theory. We also discuss the changes in the transition temperature which are caused by the
introduction of the fourth-rank term in the pair potential using thermodynamic perturbation theory for the Helmoltz free
energy.

1. Introduction have been concerned with lattice systems. In this

kind of work attention is focused on the important

Computer simulations have contributed a great
deal to our present insight of simple fluids {1.2].
The study of liquid crystal phases {3] using simula-
tion techniques is also becoming increasingly im-
portant for an understanding of the subtleties of
anisotropic systems even though of far more recent
development. Calculations aimed at reproducing
the experimental results for a specific nematogen
are not yet feasible, but several studies of model
systems have appeared [4-19). Apart from a few
investigations on systems with translational free-
dom [16-19], the majority of these simulations
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orientational properties while translational degrees
of freedom are neglected. In practice molecules are
assumed to interact according to their orientation,
while keeping the centres of mass fixed. The aim is
to try and understand the essential characteristics
of the order-disorder transition and to investigate
how macroscopic orientational properties are re-

- lated to the intermolecular potential. Another rele-

vant objective is to provide essentially exact solu-
tions for model potentials that have been treated
or can be treated with approximate theories. This
allows ‘an otherwise impossible test of the effecti-
veness of the chosen theory. The prototype of
these lattice models was first proposed by Lebwohl
and Lasher [4] and investigated by several workers
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using the Monte Carlo {4,5,13] and, more recently,
the molecular dynamics method [10] as well as a
variety of theoretical techniques [19-23]. In this
model the cylindrically symmetric particles are
restricted to be at the sites of a cubic lattice. They
interact through an anisotropic pair potential

ljij= _(1/P2(Cos Bi/)’ (1)

where ¢, ; is a positive constant, €, for neighbouring
sites / and j and is zero otherwise, Pi(x) is the
second Legendre polynomial, while 8, ; is the angle
between the symmetry axes of the two particles. It

has been found [4] that this model exhibits an.

orientational phase transition at a scaled tempera-
ture T = kT /€ = 1.127 £ 0.003 [13]). This com-
pares with a molecular field result of (T me =
1.321 (7). In other words, the molecular field the-
ory leads to an overestimation of the transition
temperature analogous to the behaviour found for
spin systems [24). In contrast, the behaviour of the
second-rank order parameter P, versus the reduced
temperature T* = T /Ty, is found to be in rather
satisfactory agreement with the molecular field
predictions [13]. Here P, is the ensemble average
of Py(cos B), where 8 is the angle made by the
molecular symmetry axis with the director. In fact
it is common practice to plot experimental order
parameters P, against reduced temperature be-
cause this provides a way of comparing results for
a variety of different nematogens and to see if the
universal curve predicted by the Maier-Saupe
molecular field theory is obtained. It is found that,
even though a general qualitative agreement with
this universal curve exists, there are a number of
cases where significant deviations occur [25]. At-
tempts to generalize the pair potential for disper-
sion forces originally used by Maier and Saupe
[19] to account for these deviations have included
the application of the molecular field procedure to
a potential written as a general Pople series €xpan-
sion [25]. It has been shown by Humpbhries et al.
[26] that a Maier-Saupe-like potential of mean
torque is obtained as the first term for axially
symmetric interactions, whatever the nature of the
underlying intermolecular forces. Since the orien-
tational order and indeed any average property at
a certain reduced temperature is determined essen-

tially by the functional form of the potential of
mean torque, the relative success of the simple
Maier-Saupe theory can be understood. It is more
dictated by general symmetry arguments than by
the effectiveness of the molecular field procedure
itself and the validity of the starting anisotropic
pair potential. The generalized version of the
molecular field theory showed, however, how to
improve upon the Maier-Saupe approach by mak-

~ ing the pair potential more realistic. Retaining the

constraint of molecular rigidity, this can be
achieved by either allowing for deviations from
cylindrical symmetry [27) or by keeping terms of
rank higher than two in the potential of mean
torque [26,28] or both.

We concern ourselves here with the second pos-
sibility namely the addition of a fourth-rank
Legendre polynomial term to the pair potential in
eq. (1). It has been known from some time [26]
that this modification improves agreement with
the experimental order parameter, although this is
to be expected because an additional parameter
has been added. It is important therefore to see if
the trend and magnitude of the observed varia-
tions in, for example, the order parameter versus
temperature curve are to be attributed to the
changes effected in the pair interaction or rather to
an artefact of the molecular field prescription. To
test this point the Monte Carlo method is particu-
larly useful and in this paper we set out to con-
sider the anisotropic pair potential

U= -:,,[Pz(cos i) + AP, (cos B,-j)], (2)

where the parameter A gives the strength of the
fourth-rank interaction relative to the second. As
for the potential in eq. (1), the interaction constant
is positive and equal to e if particles i and J are
first neighbours and is zero otherwise. The be-
haviour of a system interacting through such a pair
potential has been predicted using the molecular
field approximation [26] and two site cluster meth-
ods [20,21]. The influence of the fourth-rank term
on the transition temperature can be investigated
using thermodynamic perturbation theory and we
give such an analysis in the following section. The
Monte Carlo simulations are described briefly in
section 3 and the results of these simulations are
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presented in section 4. The transitional properties
and the temperature dependence of the internal
energy. heat capacity at constant volume and the
second-rank order parameter are compared with
the predictions of the molecular field theory in
section 5. Our conclusions are in section 6.

2. Perturbation theory

A general qualitative understanding of the ef-
fect of adding a small term AU, to a given refer-
ence potential Uj,.

can be obtained using thermodynamic perturba-
tion, theory {1.2,29]. The Helmoltz free energy for
the perturbed system can be written as

A= A5+ MU = (R/2KT YUY Yo+ ... (4)

where A is the free energy of the Maier-Saupe-like
reference system (A =0). k is the Boltzmann con-
stant, 7 the absolute temperature and where the
averages {...), are taken with respect to the un-
perturbed distribution. Here U] = U, — (U, ). The
expansion in eq. (4) is certainly valid when the
perturbation energy is small compared to kT.
Thermodynamic perturbation theory has, however,
met with considerable success in describing the
behaviour of simple fluids even beyond this limit
[30] and some recent theoretical results [31] seem
to imply that its validity may actually be more
extensive. In any event eq. (4) can be useful to
draw qualitative conclusions about the relative
stabilization of a phase when a term is added to
the reference potential. To do this we consider the
free energy at the transition temperature of the
unperturbed system both for the ordered and for
the isotropic phase. From eq. (4) the free energy of
the isotropic phase is

A =AY+ MUY, — (R /2KT)(U)M + ..y (5)

where the superscript 1 refers to the disordered
phase; a similar expression obtains for the nematic
phase with N replacing 1. The difference in the
Helmoltz free energy between the ordered and
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disordered phage js then -

BA =XAU, Y — (N /24T AU Yot -ov (6)

where Af=f™ _ 1,4 we have used the fact that
Ay equals A} at the transition for the reference
system. Eq. (6) shows that if (U;) = 0 the ordered
phase will be stabilized in second order by the
perturbation whatever the sign ‘of A provided the
mean square average value of Uj is larger in the
ordered phase, as it should be. Consider. for exam-
ple. a system of particles exhibiting a small devia-
tion from cylindrical symmetry. In this case the
perturbation would be the non-uniaxial part of the
total pair potential, namely,

Ui(r3. w5, ‘02)=Z“lﬁ'i".r(’u)stizz(9)~
k. k'#0, (7)

where u}5;(r),) are interaction coefficients and
S571.,(£) are rotational invariants, with £ giving
collectively the orientation of molecules 1 and 2,
l.e. w,. w, and of the intermolecular vector [32].
The superscripts &, k' refer to molecule-fixed com-
ponents and must be zero when the molecules
have cylindrical symmetry. Since eq. (7) contains
only terms resulting from deviations from cylindri-
cal symmetry k, k' # 0 averaging over the distribu-
tion function of the reference system of rod-like
particles for which

; Uo(’u-‘*’hwz)=2“ﬂ'1(’u)sﬂv(9)’ (8)

gives (U;)¢ = 0. In consequence the ordered phase
should be stabilized because ((Uj)?), need not
vanish and so the transition temperature should be
larger than that in the reference system. This pre-
diction is in accord with the results for a molecular
field theory [27] and a Monte Carlo simulation
[9,33] of a system of biaxial particles. Similar
arguments hold for the effect of dipolar forces or
indeed of any interaction whose average over a
uniaxial reference system vanishes by symmetry.

It has been proposed [34] that the change in the
transition temperature caused by the addition of a
perturbation to the intermolecular potential for
the reference system is given by

Toa— T = AA/AS,. %)

5
E
;
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where A4 is evaluated at the transition tempera-
ture Ty, of the perturbed system. Here TS, is the
transition temperature and AS, is the entropy dif-
ference of the nematic and isotropic phases for the
reference system. The derivation of this simple
result requires the ratio AU,/AS, to be indepen-
dent of temperature and equal to T3,; in addition
AS, is assumed to be insensitive to temperature
variations. It is possible to test the likely validity
of these assumptions for a reference system of
rod-like particles by using the Maier-Saupe theory
to estimate the temperature dependence of AU,
and AS,. These calculations reveal that although
the ratio AU, /AS, is insensitive to temperature the
entropy difference varies markedly with tempera-
ture in the vicinity of the nematic-isotropic transi-
tion. In consequence we are unable to employ eq.
(9) to determine the perturbation-induced shift in
the transition temperature with any certainty.

‘The situation is rather more complicated if the
average of (U, ), is non-zero. Thus the evaluation
of (Uy), requires a knowledge of just the pair
distribution in" the reference system when the
potential is approximated as a sum of pair interac-
tions. In marked contrast the evaluation of
{(Uy)?), requires in addition three- and four-body
distributions. To simplify the discussion we shall
therefore make explicit reference to our lattice
model and attempt to approximate the relevant
terms. We divide the potential of eq. (2) into a
reference part

b= —(EPz(cos Bij)’ (10)
)

and a perturbation, cf. eq. (3),

AUy = —¢, Z P4(c°5 Bij)v (11)
i

where we use the notation {ij) to indicate
neighbouring sites /, j and ¢, = Ae. Evaluation of
the first-order perturbation term is quite straight-
forward, it is just

AA(Ui)o= —(AezN/2)Ad). (12)

Here z is the number of nearest neighbours and we
have introduced the definition of the short-range

order parameters [8]

o, =P, (cos B,,;, (13)>

these give the rank L angular correlation at
nearest-neighbour distance while the superscript 0
indicates an unperturbed average. The second- and
fourth-rank short-range order parameters for the
reference state have been evaluated [7] for a sys-
tem of 1000 particles. In practice at T¥, we have
(o)™ =0.39, (a9)! = 0.29, (e)N =007, (a0)' =
0.04, P, =0.35 and P, = 0.08. This gives an esti-
mate of —0.09A Ne for the right-hand side of eq.
(12).

We now consider the second-order perturbation
term in eq. (5). If this term is negligible the ex-
pected shift in free energy and transition temper-
ature should be essentially symmetric for a change
of sign of A. To estimate the importance of the
second-order correction we write down the average
mean square perturbation potential as

(WY)/E= T & [(Pulcos B,)2u(cos B, )3y

- (a2)7]. (14)

where the sums are restricted to nearest-neighbour
(irJ). {'.j') sites. We can divide the contribu-
tions to the double sum into three kinds of terms -
caused by different combinations of the site in-
dices, i.e. terms where the two pairs of sites are the
same ({if) = (i’j’)), terms where there is a site in
common (e.g. {ij) and (ij’)) and terms where all
four indices are different ((ij) » (i'j")). These
different contributions are often written down
conveniently in diagrammatic form (cf. e.g. ref.
[2]). Counting the number of terms for each type
of contribution for our simple cubic lattice we find
the right-hand side of eq. (14) to be

(2N/2)C +2(2 - 1)NC,
+[zN(zN—4z+2)/4]CC. (15)

Here we have introduced

Ca = (Py(cos Bi2) Py(cos Bi2)Yo - ("40

Cp = (Py(cos By2) Py(cos B23))o — (“40

L)

)
Y., an
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Ce = (Pa(c0s Byy) Py(cos Bre)do— (02)’.  (18)

The term C, can be evaluated just from a knowl-
edge of the pair distribution for the reference
system. By coupling the two rank-four Legendre
polynomials P,(cos B,;,) using the Clebsch-
Gordan series we find

(Py(cos By, )" Yo = (1/9 + 10007 /693
+1626 /1001 + 2000 /99
+49007 /1287), (19)
and so
(N%e2/2KT ) AC, = (=N /2)[ 100408 ,/693
+162402/1001 - A(of)’]
X (N /2kT). (20)

" At the chosen temperature this contributes to the
second-order term on the right-hand side of eq. (6)
a quantity = 0.045\>Ne, where we have neglected
the small 60 and o terms.

Evaluation of the contributions Cy and C¢ is
more complicated. Strictly it involves a knowledge
of the three- and four-particle distribution func-
tions for the reference system. Fortunately for our
purpose here we are mainly interested in obtaining
an approximate estimate for them. To this end we
make the rather crude assumption that in evaluat-
ing the second-order terms the n-particle distribu-
tion for the reference system can be factorized into
a product of single-particle distributions. If this is
the case it follows immediately that the contribu-
tion to eq. (5) of the disconnected term C vanishes.
The contribution from Cy can be evaluated by
first expanding P,(cos B,,) using the spherical
harmonic addition theorem and employing the
cylindrical symmetry of the nematic phase [8] as

(APx?/2kT)AC,
= Nz(z - 1)(N%*/2kT)
x[(1/9 +100P,/693 + ...) B2 = P¢] /(T*),
(21)

which amounts to =0.026A*Ne. To check our

factorization assumption we have recalculated the
C, contribution for various values of A, —0.2 <A

-
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<0.2 and found that the errors do not exceeq
20%. We conclude that the second-order term ig
significantly smaller than the first although it s
not negligible. Since the sign of the second-order
contribution is always negative, it stabilizes the
anisotropic phase whatever the sign of A. This
means that the shift in transition temperature is
not expected to be symmetric in A. Indeed we
expect the stabilization to be greater for positive A
than the destabilization for negative ones. In the
following sections we shall see that this is indeed
borne out by our computer experiments.

3. The Monte Carlo simulations

We have employed the standard Monte Carlo
procedure with periodic boundary conditions, as
introduced by Metropolis et al. [35]. The system
studied contained 10? particles, interacting via the
potential in eq. (2), located at the sites of a simple
cubic lattice; the orientation of a particle is stored
as cos 8 and a where these are the spherical polar
angles of its symmetry axis in the laboratory frame.
The variables cos 8 and a were changed randomly
during the simulation for particles chosen at ran-
dom. The properties calculated by the simulations
were the scaled internal energy per particle (U* =
U/Ne, where N is the number of particles) and the
heat capacity at constant volume C}. This was
determined by numerical differentiation of U* with
respect to the scaled temperature (7* =kT/¢)
using a cubic spline fitting routine. The second-
rank order parameter P, was determined from the
Q tensor {15]

Qab = (31_07;— sab)/2~ ‘ (22)

where /, is the direction cosine of the molecular
symmetry axis with the a laboratory axis. Details
of this method as well as other technical aspects of
computer simulation studies of liquid crystals have
been described by Zannoni [7]. The equilibration
stage of a simulation contained typically 5000
cycles, where one cycle is N attempted moves. The
production run usually consisted of 10° cycles and
typically this was divided into 10 equal steps in
order to estimate the statistical errors in the quan-
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tities calculated. The particles were perfectly
aligned in the initial configuration for the lowest
temperature. For higher temperatures the starting
configuration was taken from a production run at
a lower temperature.

4. The results

The simulations were performed for the aniso-
tropic pair potentials with A = —0.2 and 0.2 in eq.

(2). The simulated results for U*, Cp and P,
0 b 1 }
=24 -
-3 ! !
0.75 0.95 1.18 ©1.38
T°
0 a T T

-3 1 1

0.75 0.395 1.15 1.35

T ]
Fig. 1. The dependence of the scaled internal energy J* on the
scaled temperature T simulated with A equal to (a) 0.2 and (b)

=0.2. The solid lines show the predictions of the molecular
field theory scaled 1o the transition temperature.

obtained with the two potentials are plotted against
the scaled temperature in figs. 1-3 and are also
listed in the appendix.

The scaled heat capacity C% is observed to
mimick a divergence for the potential with A = 0.2
as expected for a system exhibiting a weak first-
order phase transition; from the divergence we are
able to estimate the nematic-isotropic transition
temperature and this is given in table 1. The
temperature dependence of the heat capacity for
the potential with A = —0.2 exhibits a maximum
but not a divergence. However, for temperatures

12

1.35

0 ] |
0.75 0.95 1.18 1.35

T
Fig. 2. The temperature dependence of the scaled heat capacity
at constant voiume determined for the potentials with A equal

to (a) 0.2 and (b) —0.2. The molecular field predictions scaled
to the transition temperatures are shown as the solid lines.
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Fig. 3. The dependence of the second-rank order parameter P,
on the scaled temperature simulated for the pair potentials with
A equal to (a) 0.2 and (b) —0.2. The variation of 7’2 with
temperature predicted by the molecular field theory scaled to
the transition temperature is shown as the solid lines.

higher than that of the maximum the system is
essentially orientationally disordered while for the
lower temperature it is ordered. We are able there-
fore 1o obtain the temperature for this extremely
weak nematic-isotropic transition from the loca-
tion of the maximum, with the result given in table
1. The rounding of the phase transition exhibited
by the heat capacity and indeed the other proper-
ties which we have simulated results from the
finite sample size; this can also lead to a shift in
the transition. In principle such effects may be

m

allowed for by using scaling arguments developed
by Privman and Fisher [36)] for first-order phase
transitions. However, the finite-size scaling analy-
sis requires simulations for samples of different
size and is not straightforward. Fortunately, such
an analysis does not seem to be necessary to
understand our results, nor to compare them with
predictions of the molecular field theory.

The scaled internal energy is essentially a con-
tinuous function of temperature, in accord with
the weakness of the nematic-isotropic transition
found for systems with analogous soft pair poten-
tials [14]). However, a knowledge of the transition
temperatures allows us to estimate the entropy of
transition, albeit with rather large uncertainty be-
cause of the difficult extrapolation of U* to the
transition. The results are given in table 1.

The second-rank order parameter P, is also a
continuous function of temperature, for both val-
ues of A, although it does change rapidly with
temperature in the vicinity of the phase transition.
In addition the order parameter does not vanish
completely in the isotropic phase and we attribute
this behaviour to the relatively small number of
particles used in the simulation [13]. However, we
are able 1o estimate the order parameter at the
transition by careful extrapolation of the results
found for the nematic phase to the transition
temperature. The values so obtained are given in
table 1. For comparison we also give in table 1 the
analogous quantities determined for the purely
second-rank potential. that is with A =0 [13].

The anisotropic pair potentials used in the
Monte Carlo simulations are compared with that
for the pure second-rank interaction (A = 0) in fig.
4. The potential with A = 0.2 has a higher barrier
to rotation than that for the potential with A =
—0.2. In addition the attractive well for the A = 0.2
potential is steeper than that for the A= —0.2
potential. The pure second-rank potential has
characteristics which are intermediate between
these two. As we have seen from the thermody-
namic perturbation theory in section 2 we expect
the nematic-isotropic transition to increase or de-
crease according to the sign of A. The results of the
simulations given in table 1 are in qualitative
agreement with this prediction; in addition the
shift in T}, with respect to the reference system is

P T
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Table 1

The transitional properties determined from the Monte Carlo simulations for the pair potential in eq. (2) with A = +£0.2 together with
the predictions of the molecular field theory. The corresponding results are also reported for the system with A = 0 [13]; this Monte
Carlo simulation used a system of 8000 particles. The numbers in parentheses give the ratio of the observed to the predicted property

A ' M AS/R
simulation molecular simulation molecular simulation molecular
field field ) field
theory theory theory
-0.2 1.067 1.305 0.26 0.372 0.04 0.314
082) 10.70) 0.12)
0 1.127 1.322 0.27 0.429 0.06 0417
(0.85) (0.63) (0.15)
0.2 . 1.208 1.350 0.36 0.516 0.11 0.606
(0.89) (0.70) (0.18)

almost but not quite symmetric in A. Thus the
increase in Ty, is 0.078 for the system with posi-
‘tive A while the decrease in T3, for that with
negative A is 0.060. Such a weak asymmetry indi-
cates that the second-order contribution to the
Helmoltz free energy difference at the transition
temperature for the unperturbed system is small in
comparison with the first-order correction. The
other transitional properties also-reflect the change
in the anisotropy of the pair potential as the
contribution of the fourth-rank ‘term varies. For
the weaker potential both the entropy of transition
and the order parameter at the transition are
slightly smaller than those found for the reference
system (A = 0). However, for the more anisotropic

610 90
Bil/ ¢

Fig. 4. The anisotropic pair potentials calculated from €q. (2)
with A equal (a) 0.2, (b) 0 and (c) -0.2.

0 30

potential (A = 0.2) AS/R and P}"" are significantly
larger than those for the reference system (A =0)
(cf. table 1). In the following section we shall see
how these differences in behaviour compare with
the predictions of the molecular field theory devel-
oped by Humphries et al. [26]. ‘

5. Comparison with molecular field theory

Application of the molecular field approxima-
tion to the models which we have studied gives the
potential of mean torque as

U(B) = - z¢[P.Py(cos B) + AP, P (cos B)]. (23)

where 2 is the coordination number. The orienta-
tional order parameters are obtained from this
potential as

P, = Z“/PL(qos B) exp{(ze/kT)

X [P, P,(cos B) + P, P(cos B)]} sin B dB,

(24)
where the orientational partition function is
z =fexp{(z</kT)[Fsz(cosB)
+ P, P,(cos B)]} sin B dB. (25)
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The orientational internal energy per particle is
U= —z(P2+)\B})2 (26)
and the Helmoliz free energy per particle is
A=z¢(P+AP})/2-kTIn Z. (27)

The transition temperature for a given A is de-
termined by evaluating the order parameters P,
and P, from the consistency condition in eq. (24)
and using these to evaluate the Helmoltz free
energy. The results of such calculations are given
in table 1 for A = +0.2 as well as for the reference
system with A =0, which are the Maier-Saupe
results.

The nematic-isotropic transition temperatures
predicted for the three systems are found to be
greater than those determined by the Monte Carlo
simulations. The ratio of the observed to the pre-
dicted transition temperature ranges from 0.82 for
the least anisotropic pair potential to 0.89 for the
most anisotropic: indeed the success of the theory
seems to improve with the anisotropy of the pair
potential. The failure of the molecular field ap-
proximation to predict the transition temperatures
is not excessive and may be traced, in large mea-
sure, to the inability of the theory to determine the
coefficient of the term P, Py(cos B) in the potential
of mean torque correctly, at least when A =0 [13].
The changes in T}, produced by the introduction
of the fourth-rank term in the pair potential are
found to be much greater than those given by the

molecular field theory. Thus the transition temper-

ature is predncted to decrease by 1.2%, forA = —0.2
and to increase by 2.1%, for A = 0.2 whereas the
observed changes are 5.5% and 6.7%, respectively.

The ability of the molecular field theory to
predict the second-rank order parameter at the
transition is less impressive. The ratio of the ob-
served P,! 1o the theoretical value is 0.70 for both
potentials containing a fourth-rank. contribution.
The ratio is 0.63 for the system with A =0 and
here the discrepancy has been attributed to the
failure of the theory to determine the nematic-iso-
tropic transmon temperature correctly [13]. The
increase in P, on going from the system with
A= —0.2t00.2 is found from the simulation to be
= 38%, in almost complete agreement with the

13

prediction of the molecular field theory. In con.
trast the increases in P)Y' on changing A from
—0.2 10 0 and from 0 10 0.2 are not in accord with
theory.” This discrepancy may obtain because the
simulated result for A =0 was determined for a
system of 8000 particles {13], which is large in
comparison with the 1000 particles used in our
simulations and so the results may not be directly
comparable.

The molecular field theory is far less successful
in its predictions of the entropy of transition; for
example with A = 0 the ratio of observed to predic-

. ted AS/R is only 0.15. Similar discrepancies are

found for the pair potentials with fourth-rank
contributions and, as for the system with A = 0, we
attribute these dramatic failures to the gross un-
derestimation of the short-range angular correla-
tions in the isotropic phase. However, the molecu-
lar field theory does predict a large increase in the
entropy of transition with increasing A, in qualita-
tive accord with the changes in the simulated
values of AS/R.

We turn now to a comparison of the observed
temperature dependences of C}., U* and P, for the
two systems (A = +0.2) with those given by the
molecular field theory. In making these compari-
sons we have changed the value of z employed in
the molecular field theory in order to obtain agree-
ment between the observed nematic-isotropic
transition temperature and that predicted by the
theory. In this way we are able to remove the
discrepancy between the temperature dependence
obtained from the simulation and that from the
theory which comes from the failure of the molec-
ular field theory to predict the transition tempera-
ture. The results of these scaled theoretical calcula-
tions are shown as the solid lines in figs. 1-3; the
vertical parts of the lines in fig. 2 for the heat
capacity are a consequence of the jump in the
theoretical internal energy at the first-order phase
transition. The other theoretical values for C}

. were obtained by numerical differentiation of the

internal energy. Within the nematic phase the
agreement between the simulated and the theoreti-
cal values of the heat capacity is rather good but
the theory fails completely in the isotropic phase
where C} is predicted to vanish but clearly does
not do so. This marked discrepancy is another
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manifestation of the molecular field approxima-
tion’s failure to account for the short-range angu-
lar correlations which it predicts to be absent in
the isotropic phase.

The internal energy calculated from the theory
is in poor agreement with the results of the simula-
tion for both systems, as we can see from fig. 1.
The difference is particularly marked in the iso-
tropic phase where the theoretical U* is zero. For
the model used in our simulations the scaled inter-
nal energy per particle may be written in terms of
the short-range order parameters

U* = —z(0,+Aa,) /2. (28)

The simulations show that the molecular field
approximation underestimates this combination
which is dominated by the second-rank short-range
order parameter. This failure to predict the inter-
nal energy contrasts with the apparent success of
the theory to give its temperature derivative, the
heat capacity. Similarly the difference in the inter-
nal energy for the two systems with A = +0.2 is
well predicted by the molecular field theory, pre-
sumably because of a cancellation of errors in
estimating the short-range angular correlations.

The temperature dependence of the second-rank
order parameter is well accounted for by the the-
ory for both systems, especially at low tempera-
tures (cf. fig. 3). In addition the change in P, when
A increases from —0.2 to 0.2 predicted by the
theory is in good agreement with that obtained
from the simulations. Near to ‘the nematic-iso-
tropic transition the order parameter is overesti-
mated by the theory, possibly because the molecu-
lar field expression for the Helmaltz free energy is
in error and consequently the result for Ty, is too
low {13}. The simulation experiment overestimates
the long-range orientational order in the isotropic
Phase; this is a result of the relatively small num-
ber of particles used in the calculations [14).

6. Conclusiong

The results obtained from the Monte Carlo
simulation studies of particles interacting via an
anisotropic potential containing both second- and

fourth-rank terms have allowed us to make a
searching test of the molecular field theory for

- such nematogens. The theory is found to be rela-
tively successful in predicting the change in be-

haviour when the sign of the fourth-rank contri-
bution to the pair potential is reversed. The theory
is less successful in predicting the nematic-iso-
tropic transition temperature, slightly worse for
the second-rank order parameter at the transition
and fails completely for the entropy of transition.
The temperature dependence of P, and C} are well
predicted by the theory provided allowance is made
for its overestimation of T3,. The internal energy
is consistently underestimated by the theory which
results from its inability to predict the short-range
angular correlations correctly. Finally we note that
the results of our simulation will provide an inval-
uable test-bed for other approximate theories of
liquid crystal formation.
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Appendix

~ The results of the Monte Carlo simulations for

the scaled internal energy per particle U*, the
scaled heat capacity at constant volume per par-
ticle C} and the second-rank order parameter P,.
Table 2 lists the results obtained for the pair
potential in eq. (2) with A =0.2 and table 3 gives
those for A = —0.2. The error in P, is estimated to
be 1+0.001 while that in U* is between +0.001
and +0.005.
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Table 2

T U cr. P,
0.80 —2.594 1.9+40. 0.839
0.50 —-2.399 21101 0.79
1.00 —2.158 28401 0.745
1.05 ~2.006 33101 0.707
1.10 -1.826 38101 0.659
1.12 —1.748 42401 0.638
1.14 —1.659 54402 0.610
1.15 —1.592 $.8+0.2 0.586
1.18 ~1.403 89404 0512
1.20 ~1.176 11.3+04 0.398
1.22 ~-0.948 9.5+0.3 0.251
1.24 -0.793 41403 - 0.106
1.25 -0.791 22404 0127
1.28 -0.738 17402 0.105
1.30 -0.74 11101 0.082
1.35 ~0.662 11101 0.073
Table 3

T . Ut - P,
0.80 —1.622 1.840.3 0673
0.90 ~1.447 20405 0.607
095  -1330 26402 0.558
100 . ~1.180 32402 0.484
1.02 -1.113 48409 0447
1.03 -1.042 49107 0.398
1.05 ~0.964 44403 0.340
1.06 —-0.915 49403 0.298
1.08 -0.811 43403 0.189
109 -0.775 30403 0.161
1.10 —-0.751 19402 0.138
1.12 ~0.727 1.3+0.1 0.129
1.15 -0.683 1.240. 0.095
1.17 —0.664 1.0+ 0.1 0.093
1.20 ~0.631 12401 0.075
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