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The internal order parameter formalism is used to analyze the proton NMR spectrum of 3-phenyl-thiophene in two nematic
phases: PCH and phase I'V. Using 2 maximum-entropy approach we have obtained from the experimental dipolar couplings purely
orientational order parameters for the two rings as well as an approximate rotamer distribution. The distribution in PCH peaks
at 27° with a much smaller hump at 90° while the distribution in phase IV again peaks at 27° but is much broader, suggesting a

noticeable solvent effect.

1. Introduction

The determination of structural parameters for
rigid and non-rigid molecules in the fluid phase has
been an important field of study for a number of years
[1-4]. Nuclear magnetic resonance of molecules
dissolved in liquid crystals (LXNMR) has long
proved a useful technique for structural determina-
tions on rigid solutes [1,2]. However, all the tech-
niques applied to flexible molecules - including
LXNMR -~ have met various difficulties, some of a
theoretical nature concerning the description of or-
dering in these systems, and some connected with
the extraction of the relevant information from the
experimental data [3,5]. The description of orien-
tational ordering in molecules with internal degrees
of freedom has been considered by various authors
[6-11]. In most of these different approaches a non-
rigid molecule is considered as a collection of con-
formers, each treated as a rigid molecule. For ex-
ample in refs. [6,9,10] an ordering matrix is assigned
to every conformer and one is also calculated by av-
eraging over the conformers. Here we employ an al-

ternative approach, presented in ref. [11], where a
rotameric molecule is considered to be made up of
rigid fragments, with a certain distribution of inter-
fragment angles. The orientation of one particular
fragment is given with respect to the laboratory and
the orientaton of the others is specified with respect
to the previous one. Within this picture a rigid mol-
ecule is just a special case of a flexible one with com-
plete internal order. The goal of this study is to show

how to apply this internal order approach to obtain

conformational information in the fluid phase. The
treatment will be very briefly summarized and ap-
plied to a re-analysis of the proton dipolar couplings
of 3-phenyl-thiophene (PTP). This molecule was
studied elsewhere [12] with a more conventional

“approach and we shall emphasize the additional in-

formation that can be obtained with the new method.
In particular, we obtain the best approximate rota-
mer distribution compatible with the experimental
data.

263


Administrator
L. DiBari, C. Forte, C.A. Veracini, C. Zannoni, An internal order parameter approach to investigating intramolecular rotations by NMR in liquid crystals: 3-phenyl thiophene in PCH and Phase IV, Chem. Phys. Lett., 143, 263 - 269 (1988)


Volume 143, number 3
2. Internal order parameter formalism

The orientation of a classical rigid particle is spec-
ified by three orientational parameters w, e.g. three
Euler angles «, 8, y [13]. The characterization of the
state of a non-rigid molecule requires extra variables
[14]. We are interested in molecules with internal
rotors [5] and we consider them as a collection of
rigid subunits rotating one with respect to the other.
A relatively general treatment was given in ref, [11];
here we shall concentrate on a molecule with just one
internal rotor, i.e. 3-phenyl-thiophene (see fig. 1).
We assume that a coordinate frame M, can be placed
on each of the two fragments and we shall conven-
tionally call one of the two fragments the “rigid” one.
We define its orientation with respect to the labo-
ratory frame while the orientation of the other
(“mobile””) fragment will be given with reference to
the first one. Although the choice of the two frames
is in principle completely arbitrary, it is reasonable
to choose the reference fragment as the best char-
acterized one for the experiment at hand. For our
specific example we choose the phenyl fragment as
the “rigid” fragment and the thiophene as the “mo-
bile” one.

We write the probability of finding the molecule
in a certain orientational-conformational state as the
probability of finding the first fragment at orienta-
tion w with respect to the laboratory director frame
and the second fragment at an angle ¢ from the first,
i.e. f(w, ). This one-particle distribution is then ex-
panded in a composite Wigner~Fourier basis set. We

have
2L+1)
fo.0= % () 1t.p50)
Xexp(—iqp), ()

Fig. 1. Structure and atomic labeling of 3-phenyl-thiophene to-
gether with the phenyl axis system. The thiophene ring system is
rotated over an angle ¢ from the phenyl ring.
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where D7, () is a Wigner rotation matrix [13] and
in general ¢=0, =1, £2, ... The angle ¢, with
0<¢<2m, is the dihedral rotation angle around the
interfragment vector between the two fragments. The
orthogonality relation of the chosen basis immedi-
ately yields the expansion coefficients as

fnnq= <Df‘nn(w) exp(qu))) s (2)

where the angular brackets denote an orienta-
tional-conformational average over the distribution
flw, ¢). As usual [15] the singlet distribution ex-
pansion coefficients are related to the order param-
eters for the system. A uniaxial phase rotational in-
variance around the director gives f%,,, =/f5,,0 mo. We
have, as discussed in ref. [11], three types of order
parameters:
Purely orientational

S0 =(DGu(M,=L)) . (3)

We have used the notation B—A to indicate the ro-
tation from A4 to B, e.g. here M, — L=w. This type
of expansion coefficient is essentially an ordinary
orientational order parameter for the molecular
frame. It gives the average orientation of the refer-
ence fragment of the molecule with respect to the di-
rector frame, whatever the conformation.
Purely internal

fBog=<exp(igp))> , ¢=0, 1, +2,.... (4)

These parameters describe the ordering of the sec-
ond part of the molecule with respect to the first ir-
respective of the overall orientation. They are quite
important since they can be considered expansion
coefficients of the rotameric distribution f{¢) in the
fluid obtained by integrating eq. (1) over w. They
can be different from zero even in the isotropic phase
if there is some preferential orientation of the second
fragment around the internal axis.

Mixed internal-external order parameters. These
parameters arise when both L and q are different from
zero in eq. (2). They describe coupling between in-
ternal and external degrees of freedom. As we shall
see, a particular subset allows the recovery of purely
orientational order parameters for the second sub-
unit.
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3. Data analysis

Our aim here is to obtain as much information as
possible on flw, ¢) from an analysis of the available
dipolar couplings. To do this, we first relate these to
the various types of order parameters introduced. If
we choose our laboratory system with the Z axis along
the director, the experimental component of the nu-
clear dipolar coupling ([T;]§2:)> = \/gD,«, between
two nuclei i and j can be written as

IT)ERe> =2 <DE(M, —L) [ T137 ) - (3)

For a molecule with one internal rotor we have three
possibilities:

(1) The two nuclei i and j belong to the fragment
on which the molecular frame has been placed. In
this case [7;]3/ are constant whatever the confor-
mation and we have

<[Tu]LAB>=Z (—l)nftz)—no[Tij]%’/: ’

i, jeM, . (6)

These couplings can be employed to obtain the or-
dering matrix of the rigid part. The situation here is
formally the same as that of a truly rigid molecule.
In PTP we have six couplings for the phenyl ring,
D>, Dys, D4, D5, D55 and D,,, which can be used
to obtain the parameters f3,, and f3,,, needed to
specify the orientational order of the phenyl frag-
ment, assumed planar.

(ii) The two nuclei both belong to the second
(“mobile”) part of the molecule. The molecular
frame couplings [7]3/ exhibit in this case a de-
pendence on the internal rotation angle ¢ which could
be removed by a change of frame. Indeed, when
i, je M, eq. (5) becomes

(T;18>

—Z (Dgn(M, —L) D3t (M, — M) > [ T,137;
=Y (DM —L) > [T,137; (7)

by transforming to a frame M, fixed on the second
fragment and coupling the two Wigner rotation ma-
trices with the closure relation. For a molecule where
the internal rotation axis coincides with the molec-
ular frame z axis, we have
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D (M, — M) =6, exp(ing) (8)
and eq. (7) becomes

<[TIJ]LAB> Z (_l)nﬁ) nn[zj]Mz ’

I,jeM, . » (9)

These couplings therefore give information about
the alignment of the second fragment. It is interest-
ing to see that if enough information is available on
the ordering of the first fragment and the internal
distribution, the order parameters of the second ring
Jo —nn can be obtained even when the number of cou-
plings within the second ring is by itself insufficient.
We shall take advantage of this in PTP where the or-
dering matrix of the thiophene ring could not be ob-
tained from a standard analysis [12].

(iii) Each of the two nuclei belongs to a different
sub-unit. These are the couplings that allow us to ob-
tain information on intramolecular rotation. We have

[11]

[Ty1i% > = Z KD3H (M, = L)[T,13(8) >

ieM,,jeM,, (10)

where the dipolar coupling between the two nuclei,
being a function of the internuclear distance (see,
e.g. ref. [4]), is now a function of the internal ro-
tation angle ¢. By Fourier expansion of the tensor
component [7;])37(¢) we can write

[T;13(8) = Z[Tuq] i exp(igg) . (11)

The couplings [7,]37/(¢) and therefore the Four-
ier components [T;;.,]37 can of course be computed
for every pair of nuclei when the geometry of the
fragments is known. In fig. 2 we show as an example
the Fourier components for the coupling [ Ts.,]37
calculated from the skeleton geometry given in ref.
[12] for PTP in phase IV. We report Fourier com-
ponents from g= — 10 to 10. Substitution of eq. (11)
in eq. (10) thus gives

T8>
=) 2 (Dih(M,—L)exp(igp) > [T, 13
=Z Z ("l)nf(z)—nq[le;Q]i/’Irll s (12)
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Fig. 2 The Fourier components [T;.,]3/ from g=—10to 10. We
report the non-vanishing parts, ie. Re[76,]35 (squares),
Re[T\q, )37 (circles), Re[Tq, )32 (triangles), Im [Tie,]3
(crosses) and Im [ Te.,]% " (hourglasses). The line connecting
the points is just a guide to the eye.

where n=0, +1, *2, ¢=0, *1, +2, *+.... We see
that this type of coupling contains information on
internal order parameters. Dipolar couplings be-
tween different pairs of nuclei i and j can be ex-
pressed in terms of the same set of order parameters
f%nq- The Fourier series in g is, strictly, an infinite
one and the number of parameters is not limited by
an orthogonality selection rule as in the rigid solute
case. The convergence of the Fourier expansion of
[T;137(¢) will somewhat limit the number of rele-
vant terms but, as we can see from fig. 2, the con-
vergence is not necessarily fast. If enough couplings
can be collected a fitting procedure similar to that
employed in the rigid molecule limit [1,2] can be
used to extract a set of order parameters. In general
this will not be possible, but in a sense the slow con-
vergence can be an advantage, since it means that
the quantities we measure contain contributions from
higher harmonics. This in turn would allow in prin-
ciple a better determination of the internal rota-
tional distribution. The problem of course is that we
only have a finite and often small number of exper-
imental couplings to employ in this determination.
We shall thus resort to using a maximum entropy
technique [16], which is a powerful tool in the ap-
proximate solution of underdetermined inverse
problems of this type [17-19]. As we have seen, the
most general form the dipole coupling can take is that
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of an average of a suitable set of second-rank
Wigner-Fourier functions (see eq. (12)). Indeed the
most general form for the dipolar coupling between
i and j when the molecule is at orientation w and
conformation angle ¢ is

[ 7"[]] 12.;23(60’ ¢)
=Y 3 [T;,13 D3 (w) exp(igs) , (13)

where we can formally set
[zj;q]%27=5q.0[ﬂj]%2': ifi, jeM, ,
[T'tj;q:llzl,l'll=5q,n[T'ij]}2l‘4'2l lfl’JEMZ .

Note that this expression holds for rigid molecules as
well. The LXNMR experiment determines averages
of a set of these angular functions over f{w, ¢). Thus
the best (least biased) approximation to the true dis-
tribution in the uniaxial mesophase obtainable from
a LXNMR experiment will be of the form

Mo, ¢)=exp(2 A, D () exp(iq¢)) , (14)

where the coefficients a,., are determined by mini-
mizing the squared difference between the experi-
mental couplings and those obtained by integrating
eq. (13) over flw, ¢). More precisely we calculate
averages

(T 10> = | 4w 49 [T, 10(w, 9)

.xexp(Z @, D} () CXp(iq¢)> , (15)

nq

where

Anqg = Z 'lij[Tij;q]zzl’d': (16)
<>

and the A, are Lagrange multipliers to be determined
by non-linear least-squares minimization of the dif-
ference between the measured and the trial cou-
plings. The sum runs over the subset of couplings
{ij> that we include to try and fit the whole set. The
coefficient ay,, is obtained from the normalization
condition (1) =1. The procedure was tested first on
a molecule containing protons and observable di-
polar couplings only on the rigid fragment. Thus we
reanalyzed data for nitrobenzene in PCH employing
the geometry in ref. [20] and we were able to re-
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cover the same values published in ref. [21] for the
order parameters.

4. Results and discussion

For PTP in PCH and in phase IV we have re-
spectively 18 and 17 utilizable experimental cou-
plings (D5 is very small and comparable to its error
in phase IV) [12] which we have fitted with a total
of seven parameters each: A5, As, A6, A17, A6, Ass
and Aq,. A few tests show that inclusion of further
parameters does not significantly improve the fit.
Notice that the six couplings on the phenyl and the
three of the thiophene can be determined by the or-
der parameters f30.0, 320, & -1.1,/5 2. As men-
tioned before the geometry for the two rings has been
taken from ref. [ 12]. The root-mean-square error of

Table 1
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the two fits is 2.1 Hz for PCH and 1.6 Hz for phase
IV. The matrix of coefficients a, , obtained for the
two solvents defines the orientational conforma-
tional distribution. In table 1 we give these coeffi-
cients for [g| up to 12. Here we give two examples
of interesting observables. First we show in table 2
the order parameters we have obtained for the two
rigid rings.

Table 2
Order parameters for the phenyl (M) and the thiophene (M,)
rings

Order parameters PCH Phase IV

Re(D3(M,-L)> 0.4281+0.0002 0.2756 £ 0.0002
Re(D%L(M,-L)> —0.0859+0.0002 —0.0252%0.0001
Im¢{D3,(M,-L)> 0.0007+0.0001 —0.0216+0.0001
Re(D%,(M,-L)> —0.0835+0.0002 ~0.0186+0.0002

The first coefficients a,, defining the maximum entropy distribution (eq. (14)) as obtained for phenyl thiophene in PCH and in phase

IV. The estimated error is in the fourth figure (not shown)

q PCH Phase IV
Ao.q a_14 Qiq d_24 g Qo.q A_14 Qg a_24 2q

0 1.476 0.000 0.000 -1.385 —1.385 0.848 0.000 0.000 -0.189 -0.189
1 0.000 0.316 0.179 0.000 0.000 0.000 0.058 0.101 0.000 0.000
-1 0.000 0.179 0.316 0.000 0.000 0.000 0.101 0.058 0.000 0.000
2 1.817 0.000 0.000 -0.998 —1.106 0.671 0.000 0.000 -0.213 -0.111
-2 1.817 0.000 0.000 -—-1.106 —-0.998 0.671 0.000 0.000 -—-0.111 —-0.213
3 0.000 -—-0.902 —-0.624 0.000 0.000 0.000 -0.220 -0.228 0.000 0.000
-3 0.000 -0.624 —0.902 0.000 0.000 0.000 -0.228 -0.220 0.000 0.000
4 —-0.850 0.000 0.000 -0.218 0.142 -0.322 0.000 0.000 —0.044 0.050
-4  =0.850 0.000 0.000 0.142 -0.218 -—-0.322 0.000 0.000 0.050 - —-0.044
5 0.000 0.513 -0.327 0.000 0.000 0.000 0.195 -0.116 0.000 0.000
-5 0.000 —-0.327 0.513 0.000 0.000 0.000 -0.116 0.195 0.000 0.000
6 —0.332 0.000 0.000 0.140 0.047 -0.119 0.000 0.000 0.053 0.016
-6 -0.332 0.000 0.000 0.047 0.140 -0.119 0.000 0.000 0.016 0.053
7 0.000 0.180 ~0.088 0.000 0.000 0.000 0.065 —0.031 0.000 0.000
-7 0.000 —0.088 0.180 0.000 0.000 0.000 —-0.031 0.065 0.000 0.000
8 —0.082 0.000 0.000 0.050 0.012 -0.029 0.000 0.000 0.018 0.004
-8 —0.082 0.000 0.000 0.012 0.050 —-0.029 0.000 0.000 0.004 0.018
9 0.000 0.044 —-0.020 0.000 0.000 0.000 0.015 —0.007 0.000 0.000
-9 0.000 -0.020 0.044 0.000 0.000 0.000 —-0.007 0.015 0.000 0.000
10 -0.018 0.000 0.000 0.012 0.003 —0.006 0.000 0.000 0.004 0.001
-10 -0.018 0.000 0.000 0.003 0.012 —-0.006 0.000 0.000 0.001 0.004
11 0.000 0.009 —-0.004 0.000 0.000 0.000 0.003 -0.001 0.000 0.000
—11 0.000 —0.004 0.009 0.000 0.000 0.000 -0.001 0.003 0.000 0.000
12 -0.004 0.000 0.000 0.003 0.001 -0.001 0.000 0.000 0.001 0.000
-12  -0.004 0.000 0.000 0.001 0.003 —0.001 0.000 0.000 0.000 0.001
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Fig. 3. The probability distribution of finding the thiophene ring
at an angle ¢ from the phenyl in PCH (continuous line) and in
phase I'V (dashed line).

It is comforting to see that the phenyl ring order
parameters are in good agreement with those ob-
tained in ref. [12], in which the thiophene ring order
parameters could not be obtained. We have also cal-
culated the purely internal distribution f{¢) for thio-
phene relative to the phenyl ring by integrating f{ w,
@) over all possible orientations w of the molecule:

[dw flw, ¢)
Jdedw flw, ¢) "

In fig. 3 we show f(¢) for PTP in PCH and in phase
IVv.

It is apparent that the distribution in PCH is
peaked at about 27° with a much smaller hump
around 90°. Since, according to maximum entropy
[16], this is the most random distribution compat-
ible with our data, we have definite evidence that the
preferred rotamer of the molecule in this phase is
tilted. This is in good agreement with the one-rota-
mer model employed in ref. [12], where it was found
that a good fit could be obtained with an angle of
24.5°. The results for the distribution in phase IV
(fig. 3) shows again a peak at 27° but much broader.
This suggests a noticeable solvent effect between the
two nematics. It also makes clear that for such a broad
rotamer distribution the one-rotamer model is not
expected to be appropriate, thus explaining the poor
fit obtained for this case in ref. [12].

flg)= (17)
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5. Conclusions

We have demonstrated that the internal order ap-
proach can be applied to the interpretation of
LXNMR dipolar coupling data without invoking a
priori models for internal or overall reorientation and
their decoupling. We have used the method coupled
to the maximum entropy technique to obtain the best
approximate rotameric distribution of PTP in two
nematics. The method is quite general and we be-
lieve that it will be useful for studying solvent and
temperature effects on internal rotations.
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