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A Monte Carlo computer simulation of a planar version of the Lebwohl-Lasher model is 
presented. The model consists of a set of interaction centres forming a simple square lattice. The 
pair potential is nearest-neighbours, attractive, and varies as a second Legendre polynomial of the 
relative orientation between the two particles. Five lattice sizes, 5 X 5, 10 X 10, 20 X 20, 60 x 60 
and 80 X 80, of this two-dimensional system have been simulated with Monte Carlo and periodic 
boundary conditions. A study of the orientational pair correlation function indicates a power law 
decay in the ordered phase and an exponential decay above the pseudo-transition temperature. 
Our results are consistent with the absence of a true phase transition but also indicate a 
low-temperature phase with long short-range order. Comparisons are made with one existing 
simulation and with the mean field theory results. 

1. Introduction 

The Lebwohl-Lasher model1) has become the prototype for a number of 
studies of the orientational phase transition in nematic liquid crystals. In the 
original version of the model, particles are placed at the sites of a cubic lattice 
and they are allowed to interact through the attractive nearest-neighbours pair 
potential 

where p, measures the angle between the symmetry axes of the two molecules 
and E,, designates the strength of the interaction. Various Monte Carlo 
simulations2-") including a rather large one on a 30 x 30 x 30 lattice") 
indicate that the Lebwohl-Lasher model possesses a phase transition at a 
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dimensionless temperature T* = kTIe = 1.1232 "). The phase transition ap- 
pears to be a very weak first order transition. On a more general level the 
possibility of having a true orientational transition is certainly not forbidden in 
the standard Lebwohl-Lasher model with dimensionality d = 3 for the lattice 
and n = 3 for the orientational space. In the terminology used for magnetic 
systems the latter dimension would be called a spin d i m e n s i ~ n a l i t ~ ' ~ - ~ ~ ) .  As it 
is often the case with successful models the original system has proliferated and 
has given rise to a whole family. Thus models with molecules reorienting in a 

v 
plane (n = 2 analogous) have been investigated for linear, d = 1 17), planar, 
d = 2 18) and cubic, d = 3 lattices1". As for molecules reorienting in three- 
dimensional space, a linear (d = 1, n = 3) and a planar (d = 2, n = 3) lattice 
have been discussed by Vuillermot and ~ o m e r i o ~ ~ " ~ ' ) .  They were able to 
provide an analytical solution showing, as expected, the absence of a true 
transition for the linear lattice2"). 

Here we wish to study with the aid of Monte Carlo simulations a two- 
dimensional lattice of particles interacting through eq. (1). We shall call this 
the planar Lebwohl-Lasher model. This system cannot have conventional 
long-range order according to a rigorous study based on a generalized version 
of Mermin-Bogolyubov inequality proved by Vuillermot and ~ o m e r i o ~ ' )  for a 
class of models with Gegenbauer polynomial22) interactions. This category of 
models contains the classical Heisenberg models and the present Lebwohl- 
Lasher model. However, after the now classical Kosterlitz-Thouless finding of 
topological phase transitions in a large class of 0 (2 ) ,  n = 2 models where 
traditional phase transition is forbidden it seems interesting to collect some 
computer experimental evidence on other systems. While for particles moving 
on a plane the presence of vortices seems now fairly well established, the 
problem of existence of phase transition in planar systems with O(3) interac- 
tions is not completely settled23). A system particularly studied has been the 
Heisenberg model where the O(3) interactions are of rank one. There the 
possibility of topological defects similar to Kosterlitz-Thouless ones (instan- 
tons) has been investigated. However, while there have been many computer 
simulation studies of the Heisenberg we are aware of only one 
study reported for the planar second rank model equation (1) 5 ) .  This was a 
Monte Carlo simulation of a relatively small 20 x 20 system performed by 
Mountain and Ruijgrok as part of an interesting Monte Carlo study of various 
planar Lebwohl-Lasher lattices5). In this study Mountain and Ruijgrok ex- 
clude a first order phase transition and suggest that ordering takes place 
through a higher order mechanism. Here we wish to collect some MC data on 
the 0(3) ,  d = 2, second rank model for various systems of different sizes. In 
particular we wish to provide some evidence on the existence and character of 
a pseudo-orientational phase transition and on the type of order decay with 
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distance. The possibility of observing ordered liquid crystal systems in two 
dimensions, e.g. on surfaces, would be linked to a decay slow enough to allow 
formation of patches susceptible of experimental observation. For this purpose 
studying various systems of increasing size is essential and has been one of the 
aims here. 

2. The simulations 
'3 

We have studied five systems of different sizes. A standard Metropolis 
Monte Carlo method with periodic boundary  condition^^""'^) has been em- 
ployed to generate equilibrium configurations. The simulation at the lowest 
temperature studied for each of the five cases was started from a completely 
aligned system. The simulations at the other temperatures have been normally 
run in cascade starting from an equilibrium configuration at a nearby lower 
temperature. An additional simulation has been run for the 20 x 20 lattice 
starting from a random (isotropic) configuration and cooling down. This has 
been done with the purpose of looking for hysteresis effects as we shall discuss 
later on. The orientation of each particle is stored as cos P and a ,  where P and 
a are the polar angles of the symmetry axis of each particle. The configuration 
of the system is thus given by the set of N such orientations {a , ,  P,)  where N is 
the number of particles. We update one particle at a time and as usual we shall 
call a cycle a set of N attempted moves. A new configuration is generated by 
randomly choosing a particle amongst those that we have not yet attempted to 
move during the current lattice sweep with a shuffling algorithm1'). The 
orientation of the chosen particle is then changed by generating new uniformly 
distributed random values of the variables cos P and a. A satisfactory rejection 
ratio is achieved for our temperature range even with these potentially large 
orientational jumps. In every simulation a minimum of 5 000 cycles has been 
used for equilibrium and thus rejected when calculating averages. Runs were 
typically between 12 000 and 20 000 cycles. Longer runs, from 60 000 to 90 000 
cycles, have been run for the four temperatures near the heat capacity anomaly 
of the 80 x 80 lattice. Any property of interest, A,  is evaluated at every cycle. 
After a certain number of cycles m, (typically between 1000 and 2000) an 
average is calculated thus effectively coarse-graining the trajectory. A 
further grand average is then computed as the weighted average over M such 
supposedly uncorrelated segments. The attendant weighted standard deviation 
from the average u, is also calculated and gives the error estimates reported 
here for observables. 

We have calculated for each simulation energy, second and fourth rank order 
parameters. Pair correlation coefficients again of second and fourth rank have 
been calculated at selected temperatures for the 20 x 20 and 80 x 80 lattices. 
The heat capacity of the system has been evaluated by differentiation of the 
internal energy. 
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3. Results and discussion 

3.1. Energy 

The energy of the system is calculated as a sum of pair interactions as in eq. 
(1). Thus 

N N 

(UN) = - C C &,,(P2(cos Pi,)) ; with i # j 
, = I  , = I  

where z = 4 is the coordination number and a, = ( P2(cos PI,)) is a short-range 
order parameter averaged over neighbour particles. The average dimensionless 
single particle energies U * = ( U ) IN& at the set of reduced temperatures 
T* = kTI& studied are reported in fig. 1. They are quite similar even for our 
smallest and largest systems, thus it seems that short-range order effects are 
settled very quickly. Examining fig. 1 we see that the curves are essentially 

U" 

0 . 1  0 . 3  0 . 5  0 . 7  0 . 9  1 . 1  

~ T / E  
Fig. 1. The single particle energy U * = ( U )  IN& versus dimensionless temperature kTI& = T* for 
the square Lebwohl-Lasher lattice of size 5 x 5 (squares), 10 x 10 (triangles), 20 x 20 (circles), 
60 x 60 (plus), 80 x 80 (stars). 
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superimposable from the lowest temperatures up to T* =0.6 and that they 
deviate a little more at high temperatures for the various systems examined. 

3.2. Heat capacity 

The dimensionless heat capacity C ;  is obtained here by differentiating the 
average energy with respect to temperature as previously describ~d'~) .  In 
brief, the energy values are interpolated and smoothed using a five-point 
orthogonal formula before performing the numerical differentiati~n'~.~') with 
an inversion method'". The results are presented in fig. 2 for the various sizes 
studied. Wc sec that heat capacity is insensitive to increasing the system size 
from 100 to 6 400 particles. This contrasts profoundly with the behaviour found 
in the three-dimensional Lebwohl-Lasher model1'). There a marked sys- 
tematic sharpening of the heat capacity peak with increasing lattice size is 
observed as it is expected for a true phase transition. The pseudo-transition 

Fig. 2. The hcat capacity Cc obtained from differentiation of energy plotted versus dimensionless 
tempcraturc kTIc. Symbols for thc various lattice sizes are as in fig. 1. 
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TABLE I 
The pseudo-transition temperatures T r  and T; obtained from the heat capacity and 
order parameter derivatives. The peak values c:,, and [d(P2)  /dT*]o,,n arc reported. 

Thc results correspond to the five lattice sizes (L x L )  considered. 

L c,T*, T;r [d(P2) ldT*l,," T;*, 

5 2.7 2 0.2 0.68 ? 0.01 -1.5 ? 0.3 0.68 0.01 
10 3.3 +- 0.1 0.66 2 0.01 -2.8 2 0.2 0.66 +- 0.01 
20 3.3 2 0.1 0.62 2 0.01 -4.1 ? 0.3 0.62 2 0.01 
20") 3.5 r 0.1 0.62 k 0.01 4 . 2  -t 0.3 0.62 + 0.01 
60 3.2 r 0.1 0.60 2 0.01 -5.0 -t- 0.2 0.56 + 0.01 
80 3.14 ? 0.01 0.62 k 0.01 -5.1 20 .1  0.58 ? 0.01 

"'~imulation run in a cooling sequence 

temperature, i.e. the temperature at which the maximum of the heat capacity 
occurs decreases as the size increases as we can see from table I. 

According to finite scalingx') the transition temperature T,.(L) for a system 
with linear dimension L is linked to the true one by the scaling relation15) 

where a is a constant for the system and boundary conditions chosen and v is 
the correlation length exponent. In practice a trial v = 1 is often assumed in 
view of the uncertainty in the experiment and of the fact that v is of course 
unknown15). In fig. 3 we show a finite size scaling plot of T;P. The heat capacity 
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Fig. 3. A plot of the temperature of the heat capacity anomaly maximum T,* plotted vs. inverse of 
the latticc linear size L (squares). The circles correspond to the same scaling plot for the order 
parameter derivative peak. 
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results (square symbols in fig. 3) indicate a low-temperature shift with size, 
even if this effect becomes at best very modest for the two larger systems. We 
conclude that on the basis of C: alone we can just confirm the theoretical 
expectations about the absence of a true phase transition. 

3.3. Order parameters 

In any problem involving liquid crystals the calculation of order parameters 
is of central importance. Here the order parameters represent expansion 
coefficients of the expansion of the singlet distribution P(cos P )  with P the 
angle of the particle axis and the preferred orientation (director) in a Legendre 
polynomials'2) basis. We have determined the first two nontrivial order 
parameters as follows. 

The second rank order parameter (P,),  is calculated as usual in the 
computer simulation of systems with periodic boundary  condition^^'^') from 
the average over cycles of the largest eigenvalue, A,, of the ordering matrix Q, 

0.1 0.3 0.5 0.7 0.9 1.1 1.3 

TI 

Fig. 4. The second rank order parameter (P,), for the six systems studied plotted vs. dimension- 
less temperature T*. Here ( P , ) ,  is obtained from the largest eigenvalue of the ordering matrix as 
recalled in the text. Simulations from a heating sequence for 5 x 5 (squares), 10 X 10 (triangles), 
20 x 20 (empty circles), 60 x 60 (plus), 80 x 80 (stars) are shown. An additional 20 X 20 simulation 
run in a cooling sequence is also shown (full circles). 
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where, e.g., q , ,  stand for the x component of the unit vector q, specifying the 
orientation of the ith particle. The matrix is computed and diagonalized at 
every cycle and the average ( - . - ) , extends to all the particles in the system. A 
discussion of this and other definitions of (P,) was given in ref. 11. The order 
parameter (P,), obtained in this way is plotted in fig. 4 against temperature 
for all the systems we have studied. 

We notice first that for small lattices the curves change quite noticeably with 
size. For instance the 5 X 5 and 10 x 10 systems have an order parameter quite 
high and different from one another in the isotropic phase. However, the 
differences become less apparent as the size increases. This behaviour is not 
too surprising3,) since it is partly dictated by the low-temperature limit of one 
and the high-temperature limit of B(l IN) 33) for (P,),  . Very little differences 
are observed between a 60 x 60 and an 80 X 80 magnitude. We notice also the 
absence of hysteresis in the 20 x 20 system. Indeed the (P,),  for the set of 
heating (empty circles) or cooling (full circles) experiments are in excellent 
agreement through the whole temperature range. The slope of the order 
parameter vs. temperature curve depicts the potential occurrence of a transi- 
tion or a rapid change of the order parameter. The temperature derivative of 
the order parameter can be viewed as a rough long-range indicator of the 
transitionz7) to be compared with the short-range indicator, i.e. the heat 
capacity. We have thus computed these derivatives following the same 
smoothing-interpolation procedure as previously introduced. The values of the 
long-range pseudo-transition temperatures obtained are reported in table I. We 
see that there is excellent agreement between the long-range and the short- 
range indicators for sizes up to 20 x 20. For larger sizes the transition tempera- 
ture as signalled by the order parameter derivative is slightly lower than that 
obtained from C:. In the analysis of simulations data for the three-dimensional 
Lebwohl-Lasher model") it was found quite useful to examine histograms of 
the occurrences of ( P,), during the simulation. The rationale is that the shape 
of the distribution of order parameters can yield indications of the occurrence 
of a phase transition in terms of changes of asymmetry. Moreover an estimate 
of the extent of fluctuations in (P,),  can be obtained from the width of 
distribution. In fig. 5 we present histograms of the (P,),  distribution for four 
temperatures across the heat capacity anomaly of the 80 x 80 system. We see 
that even for this fairly large system the change from order to disorder is quite 
smooth. Fluctuations become very large at T* = 0.58 and the spread of (P,), 
values really shows that this is more informative than just looking at the 
average value. 

The calculation of the fourth rank order parameter (P,),  was performed 
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Fig. 5. Histograms of frequency of occurrence of the second rank order parameter ( P , ) ,  during 
simulations on the 80 X 80 lattice at T* = 0.40 (a), 0.54 (b), 0.58 (c), 0.72 (d). 

according to the algorithm we have previously pr~posed" ,~ ' ) .  The values for 
the fourth rank order parameter obtained for our simulation are reported as a 
function of temperature in fig. 6. The fourth rank order parameter shows again 
a convergence with sizes above 60 x 60. 

3.4. Orientational pair correlations 

The two-particle angular correlations coefficients G,(r) describe a set of 
expansion coefficients of the rotationally invariant pair correlation func- 
tion'."). The calculation is quite time-consuming and represents a relevant 
percentage of the total time spent in the simulation (roughly a fourth). We 
have calculated the first two angular pair correlation coefficients G, and G, for 
all the temperatures of the 20 x 20 system studied in the heating sequence. For 
the 80 x 80 system the pair correlations have been computed for a few selected 
temperatures only. In fig. 7 we show as an example G2(r) of the large lattice 
for two temperatures, respectively below and above the heat capacity anomaly. 
When using periodic boundary conditions, every distance-dependent property 
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T "  
Fig. 6. The fourth rank order parameter (P,), obtained as described in the text plotted vs. 
temperature T* shown for the various systems studied (symbols as in fig. 4). 

r 
Fig. 7. The second rank pair correlation coefficient G,(r) .  The example case shown is for the 
80 X 80 lattice at temperatures T* = 0.54 (a) and T* = 0.72 (b). 



is determined modulo the box length so the correlations will grow eventually 
with separation. Here we show the curves for distances starting from the 
nearest-neighbour one and up to half of the box length. The pair coefficients 
G,(r) start from one and in a uniformly aligned system with true long-range 
order would tail off to essentially ( P L , ) 2  '). This is what happens in the 
three-dimensional Lebwohl-Lasher model") below the nematic-isotropic 
transition. On the other hand, a system like the one-dimensional Lebwohl- 
Lasher model where a phase transition does not exist should have theoretically 
an exponentially decaying ~orrelat ion '"~~') .  We show elsewhere that this is 
indeed the case12). We see that below T,*. a slow decay is observed while the 
decay is very fast above T:. Obviously it is difficult to assess an appropriate 
functional form at eyesight. We have thus performed a nonlinear least-square 
fitting of all the second rank correlation coefficients available to the following 
two expressions: 

(a) exponential decay to a plateau, 

G2(r) = (1 - A,) epkcr  + A c  ; (5) 

(b) power law decay to zero, 

In practice we perform the nonlinear least-square fit to raw data up to a certain 
cut-off length L,. We have found that the exponential law gives a better fit for 
the results above T:, while the power law gives a better representation of the 
data below T:. In fig. 8 we present a plot of our data for the power law decay 
constant k, for the 20 x 20 system at temperatures below T:. We see that the 
decay length (inverse of k,) increases regularly as the temperature decreases, 
tending to infinity (k, = 0) at T* = 0. The points obtained for the 80 x 80 
lattice shown for three cut-offs (L, = 10,20,40) confirm this behaviour. Results 
for the different cut-offs are in very good agreement except near the order- 
disorder anomaly where the power-law fit is poor anyway. We also notice that 
the results from the 20 x 20 simulation are in agreement with those for the 
larger system, especially at low temperatures. It is tempting to compare our 
results for k, with the values predicted by the Kosterlitz-Thouless theory. In r 

particular Kosterlitz-Thouless predict that k, = 114 at the vortex unbinding 
transition. If we look at the data in fig. 8 and only consider points up to 
temperatures where a consistent fit, with good agreement between different 
cut-offs, is obtained (i.e. say up to T* ~ 0 . 5 5 )  then a value of k, not too 
different from the Kosterlitz-Thouless one is obtained. It should be noticed, 
however, that in this O(3) model the standard vortices do not represent a true 
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T' 
Fig. 8. The decay constant k ,  in a power law fitting of G,(r) vs. r. Data are shown for the 20 X 20 
planar lattice (squares) with a cut-off distance at r = 9 and for the 80 x 80 lattice with a cut-off at 
r = 10 (full squares), r = 20 (triangles), r = 40 (full circles). Results are plotted at the available 
dimensionless temperatures T*. 

topological defect, since the molecular orientation vector can point outside the 
plane. After the findings of Belavin and ~ o l ~ a k o v ~ ~ ~ )  the presence and the role 
of instantons has been investigated in the O(3) Heisenberg but it is 
probably fair to say that their importance in lattice model is still being 
discussed26b). We have also investigated the presence of ordered structures but 
we were unable to observe well-characterized structures. 

4. Conclusions 

b 
Where comparison is possible our results are in agreement with those of 

Mountain and ~uijgrok') ,  while extending them to larger size systems. In 
addition the finer temperature grid allows us to improve the determination of 

% the heat capacity anomaly temperature. Investigation of the size dependence of 
the results shows that some of them, and particularly the order parameter, 
change when going from the 20 x 20 to the 60 x 60 and 80 X 80 lattices. We 
think the calculation and analysis of pair correlation functions is particularly 
useful in trying to assess the extent and type of ordering present in the system. 
Performing this kind of investigation we find that the system does not exhibit a 
true phase transition, in accordance with theoretical results. However, the 
system presents long short-range order with a decay of the pair correlation 
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function which is exponential above a characteristic temperature Tg and a 
much slower power law decay below. Determining the nature of ordering in 
this temperature region would require further investigations, a bit like in the 
Heisenberg model c a ~ e ~ ~ - ~ " ) .  After all, even though the rigorous arguments 
tell us what cannot happen in an infinitely large lattice, they do not say very 
much about alternative allowed kinds of ordering in finite although possibly 
large systems. 
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