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Abstract  Monte Carlo simulations of lattice spin models are a powerful method
for the investigation of confined nematic liquid crystals and allow for a
study of the molecular organization and thermodynamics of these sys-
tems. Investigations of models of polymer-dispersed liquid crystals are
reviewed devoting particular attention to the calculation of deuterium
NMR spectra from the simulation data.

Introduction

Lattice spin systems are the simplest models used for the investigation
of liquid crystals by means of computer simulations [1] and were intro-
duced in this field by Lebwohl and Lasher (LL) [2]. After their pioneering
work a large amount of simulations has been done on generalizations of
the LI model [1], even though in the last few years more realistic poten-
tials, like the Gay-Berne one [3] or its generalizations [4], have become
popular. Anyhow, as long as the properties of interest are purely ori-
entational, there are several advantages in using simple lattice models
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(with respect to potentials with translational degrees of freedom), par-
ticularly the possibility of performing simulations on a large number of
particles. As an alternative, using smaller lattices it is possible to inves-
tigate potentials for more complicated systems depending on additional
parameters, for example associated with changes in boundary conditions
and field strengths, over a wide range of state points. For instance, the
Monte Carlo (MC) simulation method was applied to studies of con-
fined nematics where it is important to perform the calculations under a
variety of different conditions [1]. As technical applications of confined
liquid crystals are numerous, the need to understand and predict vari-
ous experimental situations makes the simple spin models a convenient
and flexible tool to simulate realistic situations. In particular, we have
shown that this technique is useful in investigating droplets with fixed
(homeotropic and planar) surface alignment [5, 6] mimicking polymer-
dispersed liquid crystals (PDLC) [7]. Ilere we give a briel resume of
the method and a short review of the main results obtained from the
simulations of nematic droplets.

1. Polymer-dispersed liquid crystals

Polymer-dispersed liquid crystals (PDLC) [7] are materials that con-
sist of microscopic nematic droplets, with typical radii from a few hun-
dred Angstrém to more than a micron, embedded in a polymer matrix
(see T'ig. 1). These systems are interesting both for technical appli-
cations and for an understanding of the behavior of mesophases in a
confined environment. PDLC droplets also represent practical realiza-
tions of systems exhibiting topological defects of interest in many fieids




Figure 2. A schematic representation of the molecular ordering inside a PDLC
droplet in the nematic phase; (a) radial, (b) bipolar.

of physics [9, 10]. Various experimental works have considered differ-
ent boundary conditions (see Fig. 2) at the droplet surface, for example
radial [11, 12], axial [12], toroidal [13] and bipolar [11, 12, 14] ones, de-
pending on the polymer matrix chosen, and on the preparation methods.
The resulting molecular organization inside a PDLC droplet stems from
a competition between surface boundary condition effects, the nematic
ordering inside the system, and thermal disorder. Additional effects of
interest come from the application of an external electric or magnetic
field [11]. From the theoretical point of view these systems have been
studied by means of elastic continuum approaches [7] and by Monte
Carlo computer simulations of lattice models [1].

MC simulations have been used to study PDLC in a variety of phys-
ical situations: for different boundary conditions |5, 6] and anchoring
strengths at the nematic/polymer interface [5, 6], as well as for different
strengths of the external field [6]. Methodologies to calculate deuterium
NMR line shapes and textures observable in polarized light experiments
corresponding to the microscopic configurations found have also been
developed [1, 15, 16]. Here we describe how to bridge the gap between
simulations and experimental investigations performed on the same sys-
tems.

2. The simulation method

As already mentioned, we deal with systems defined on a simple cubic
lattice where the N particles (spins) interact through a pair potential of
the form

3 , 1
Uiy = —€i57(cos fi;) = —€4; b(uZ cuy) — 5] . (1)
Here ¢;; is a positive constant for nearest neighbor spins ¢ and j (zero
otherwise), P is the second-rank Legendre polynomial, and 3;; is the
angle between the three-dimensional unit vectors u; and uy located at
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of a real nematic, showing a weakly first order nematic-isotropic (NI)
phase transition (at a scaled temperature Tx; = kpTnr/e — 1.1232) [17,
18], a reasonable dependence of the orientational order parameter ()
against temperature, and even diverging pretransitional effects, as also
found for real nematics just above 1%;. We have suggested [6] that
the model works so well because a “spin” represents a closely packed
group of molecules, rather than a single particle, and that these micro-
domains maintain their local structure at various temperatures and even
across the nematic-isotropic phase transition [5]. As a special case these
domains could comprise just one molecule but it seems more realistic to
assume that they typically include up to a hundred of particles.

The configuration of the system is given by the set of spin orienta-
tions. To update the lattice we use a standard Metropolis Monte Carlo
procedure [19], and a new configuration is then generated by choosing
a particle at random for a trial move at every cycle using a random
shuffling algorithm [17]. The new orientation of the chosen particle is
generated by a controlled variation from the old one using the Barker-
Watts technique [20], to achieve a rejection ratio not too far from 0.5. A
certain number of cycles (a cycle is a set of N attempted moves) is per-
formed, and any property of interest (e.g., A) is evaluated at every cycle
or every few cycles. The observable value (A) is then obtained as an av-
erage over these instantancous values. For each simulation we routinely
calculate energy, heat capacity, nematic second-rank order parameter
and pair correlation coefficients. In addition, order parameters suitable
to quantify a particular type of ordering for the different cases are intro-
duced and calculated, as outlined in the following sections. Moreover,
the MC technique was shown to be a powerful method also for the sim-
ulation of experimental observables, like polarized light textures [1] or
NMR spectra [1, 15, 16, 21].

2.1 The PDLC simulation model

The properties of the nematic at the interface depend on the charac-
teristics of the surface in contact with the liquid crystal, and the task
of defining and including the boundary conditions in the spin model is
hence fundamental for a simulation of a confined system. The PDLC
model consists of an approximately spherical sample S carved from a
cubic lattice with spins interacting with the LL potential, as given in
Eq. (1), while the surface effects are modeled with a layer of outside
“ghost” spins, G, which are kept frozen during the simulation. The lig-
uid crystal particles at the interface tend to be ordered according to the
orientation of the “ghost” neighbor molecules in the outside environ-




Figure 3. Nematic order parameter {F»)» versus temperature for the radial, toroidal
and bipolar boundary conditions (J — 1) and for the bulk. All the results have been
obtained from simulations of a droplet carved from a 10 x 10 X 10 lattice.

ment, through a coupling depending on the anchoring strength. This
ordering propagates from the surface layer of the liquid crystal towards
the droplet center. The coupling between nematic and “ghost” spins can
be varied to model the effect of different surface materials, i.e.,

Uij = —eijd E(ui uy)? — %] ., for  i€8,5€0, (2)
where the parameter J accounts for the strength of anchoring at the
polymer surface. When the interaction between two neighbors, one on
the surface of the nematic droplet and one belonging to the outside
matrix, is the same as that between two liquid crystal spins then J — 1,
while J = 0 would correspond to a droplet in vacuum.

2.2 Molecular ordering

To examine the ordering inside the microdroplet, various second-rank
order parameters are calculated for the systems to be investigated. The
global second-rank order parameter, (%)), is obtained as the largest
eigenvalue from the diagonalization of the ordering matrix averaged over
the whole sample and MC cycles [1]. (P)y then quantifies the nematic
order with respect to a hypothetical global director. In Fig. 3 the pa-
rameters (P,), for the radial, bipolar, and toroidal boundary conditions
are shown together with the bulk behavior, as obtained from simulations
in a bulk system of the same size. From the (Ps), curves it can be de-
duced that the nematic-isotropic phase transition is suppressed for smaii
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Figure 4. Radial order parameter (P} g for a nematic droplet with radial boundary
conditions plotted against the distance, in lattice units, from the center of the sphere.
Results for a N = 5832 particle droplet at some scaled temperatures (left) and for
different system sizes at temperature 7" = 0.2 (right).

enough confined systems, as confirmed by the heat capacity behavior [5].
Moreover, we have found it useful to define some order parameters more
appropriate to each special case. For example, in case of radial boundary
conditions, it is not possible to distinguish between a perfectly ordered
radial configuration and a completely disordered system just from the
value of (P2). We have then defined a radial order parameter [5]

N
(Pi 3 Palus v ®)
i
where r; is the radial vector of the ith spin. For a perfect “star” configu-
ration (Po)p — 1. Tt is also possible to divide the droplet into concentric
shells and calculate relevant quantities within such regions, so as to mon-
itor the variation of the ordering on going from the center to the border
of the system. As an example, the behavior of (P2)g with respect to the
distance [rom the droplet center r is reported in Fig. 4 at some selected
temperatures (left plate), and for different droplet sizes at 17 = 0.2
(right plate). These results show a nematic ordered core at the center
of the droplet consistent with a ring disclination [22].

Following the same line of thoughts, it is possible to define a configu-
rational order parameter, (F»)c, which tends to one for a configuration
perfectly ordered according to the idealized structure induced by the
boundary conditions used:
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Po)e = = > Polws - ). (1)
iv i—1

o




7

Here c; denotes the direction corresponding to the local alignment in-
duced by the surface. For example, in the bipolar case c; is a local
meridian that lies on the plane defined by the droplet axis (z-axis) and
the radial vector r; of the particle while being perpendicular to r; itself.

It is also convenient to calculate the local second-rank order parameter
S, again obtained by diagonalizing the local ordering matrix. Contrary
to the global second-rank order parameter (FP2)y introduced above, here
the ordering matrix is calculated for each lattice site separately and av-
eraged over MC cycles only [15, 16]. Therefore the resulting ordering
matrix is “MC time”- rather than ensemble-averaged. After diagonal-
ization, the eigenvalues with largest absolute values are identified as the
local S. These can then be averaged either over the whole droplet or
within spherical shells [e.g., to yield S(r) profiles|. Further, in presence
of external fields additional order parameters can be defined and will be
introduced later.

Finally, to understand the effect of the size dependence in the model,
samples of different sizes (from 304 to 54474 spins) have been investi-
gated [10]. The similarity in the behavior of properties calculated for
different sample sizes supports the argument that each of the spins could
really be a microdomain of up to 100 particles, and that our results also
are applicable to droplets in the micron size that have been investigated
experimentally [7]. Note that a full rescaling of order parameter pro-
files is not possible in the vicinity of topological defects (present, e.g.,
in radial droplets), but the defect size — given by the non-scalable ne-
matic correlation length — is usually too small to significantly affect the
overall behavior of the system.

3. 2H NMR

Deuterium nuclear magnetic resonance (2II NMR) [8, 11, 23, 24| is
a powerful experimental technique that is most frequently applied to
investigate poly-mer-dispersed liquid crystals (PDLCs). It is very con-
venient for the study of such heterogeneous systems since using deuter-
ated nematics the resulting spectra only give direct information on the
behavior of the liquid crystal confined to spherical cavities inside the
non-deuterated polymer matrix. Further, it is applicable also to small,
i.e., submicron droplets, where optical methods fail to yield useful in-
formation because the light wavelength is too large compared to the
droplet diameter. 2H NMR spectra provide information about the ori-
entational molecular ordering inside nematic droplets, including director
configurations and dynamic processes such as molecular fluctuations and
diffusion.

In the bulk isotropic phase, the 2H NMR spectrum of a nematic selec-
tively deuterated at one position consists of a single line whose position in
the spectrum is determined by the Zeeman splitting of deuteron energy
levels in the spectrometer magnetic field and whose width is well below
100 Hz. Since deuterons possess a nonzero quadrupolar moment, there
is an additional perturbative contribution to their energy levels coming
[rom quadrupolar interactions between them and the electric field gra-
dient (EFG) of the C-D bonds in nematic molecules. These anisotropic
perturbative contributions are completely averaged out by molecular
motions in the isotropic, but not in the nematic phase. Indeed, once
in the nematic phase, the single narrow line splits into a doublet, the
frequency splitting now being typically of the order of ~ 100 kHz. Tt
depends on the relative orientation of the EFG tensor symmetry axis
(which is related to the orientation of the long molecular axis a and
the director n) and the direction of the external magnetic field B. For
uniaxial nematics this splitting is given by (7, 25, 26]

wolr) — owo S(r) EcosQO(r) - ﬂ : )

where dwg is its maximum value (proportional to the quadrupolar ten-
sor anisotropy), S(r) is the local uniaxial nematic scalar order parame-
ter defined by the average S(r) = $[3((n(r) - a)%) — 1], and 6(r) is the
angle between the local director n(r) and the magnetic field B. In con-
fined nematics, e.g., in PDLCs, the director orientation will change with
position, n — n(r) reflecting the boundary conditions imposed by the
polymer matrix. Consequently, the corresponding contributions to the
“H NMR line splitting wg(r) will depend on r as well. Since the NMR
spectrum corresponds to the overall response of all molecules in the sam-
ple, each of the director configurations n(r) appearing inside the droplet
vields a specific contribution. The identification of each contribution
can, however, be very problematic since also dynamic processes such
as molecular fluctuations and translational diffusion affect the 2H NMR
line shape.

In the absence of significant molecular motion the spectra can be cal-
culated simply as a powder-like super-imposition of the individual molec-
ular static lines of Lorentzian shape from all over the sample. These lines
are then positioned into the spectrum according to Eq. (5) as in Rel. [6].
To include also dynamic effects, such as fluctuations of molecular long
axes (defining the scalar order parameter S and the director n) and
translational molecular diffusion, it is convenient to use a semi-classical
approach with the time-dependent deuteron spin Hamiltonian [25] where

the 2Hf NMR line shape T(w) is calculated as the Fourier transform of




the relaxation function G(t)
I(w) = / expliwt) G(1) di, (6)

where G(1) is generated as

t
G(t) = exp('iwzt)<exp (IA Qolr:(t), '] dt')>i. (7

Here wyz denotes the Zeeman frequency, while the brackets (...); stand for
the ensemble average over all molecules in the sample. The instantaneous
resonance frequency of the ith molecule with coordinates r; is given by
wz + Qolrs(1), '], where Qqolr;(),1'] = +éwold(u; - B/B)? — 4. It
depends on the instantancous molecular orientation (given by ;) that
is constantly changing during the NMR experiment [15]. Calculating
G(t), it is assumed that the deuteron spin Hamiltonian is secular and
hence excludes deuteron spin flips as the molecular orientation varies.

Neglecting for the moment translational diffusion, we have r; # r;(t')
and Qg = QQ(rd,t’), The time dependence in Qg is then caused solely
by fluctuations of molecular long axes, keeping molecular positions fixed.
To simulate such a dynamics we calculated spectra using the data from
1024 successive MC simulation steps. The characteristic time scale
for long axis orientational fluctuations {p is in a typical liquid crys-
tal ~ 107 s [27]. The dynamics of MC simulations is determined by
the arbitrary molecular evolution process chosen (in contrast to molec-
ular dynamics simulations), so the time scale assigned to fluctuations
generated by this technique does not necessarily have to match with the
natural time scale indicated above. However, the update process we have
adopted here moves one molecule at a time for a certain angular step and
is thus a plausible physical evolution process. In this sense, we can map
the MC dynamics onto a plausible real one, apart from for an arbitrary
time unit. Including also the translational diffusion, we have r; = ry(¢'),
too. The typical time scale for a diffusion yielding a displacement for
one molecular length (~ 1 nm) is also of the order of tp ~ 107 s [27].
It is, however, more relevant to know the time t7, needed for a molecular
diffusion to yield a displacement over which the average molecular orien-
tation [i.e., the director field n(r)| changes considerably. This distance
obviously varies with the system size, i.e. the droplet radius R, so the
relevant diffusion time ¢, can become much larger than ¢p. In other
words, in smaller droplets the effects of translational diffusion on the
spectra can be much more important than in larger ones.

In order to estimate how dynamic processes influence the spectra, it is
necessary to compare their typical time scales to the characteristic NMR
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time scale tg &~ 27/dwg, which, for the deuterium quadrupolar splitting
in the nematic phase, is of the order of ~ 107% s. Tf the molecular
motion is sufficiently slow on the NMR time scale #g, the spectra can
be calculated as I(w) = (0w — wz — wo(r;)]), [11], ie., it is possible to
use the static approach used in Ref. [6]. If, at the other extreme, the
motion is very fast on the ¢; scale, the spectrum is completely motionally
averaged and now consists of a single line I(w) — 0w — wz — (Wq(rs))il
which is positioned at an average frequency (wg(rs)): [11].

First we have systematically calculated the NMR spectra for different
director configurations in nematic droplets, proceeding from the static
limit to the limit of completely motionally averaged spectra, in order to
find out to which extent diffusive processes smear the spectra and thus
make the identification of director configurations impossible. To see this
effect, a number of simplifying assumptions, described later, has to be
invoked. To ensure being well inside the nematic phase, the reduced
temperature T* — kpT/e was set to T* — 0.8 (note that the nematic-
isotropic transition for the LL model occurs only at Tj, = 1.1232).
Further, in all cases the strength of the coupling between nematic and
ghost spins was chosen to be J = 1, which implies that anchoring is
rather strong. Note also that in Eq. (1) we have assumed no coupling
between the spectrometer magnetic field and the molecular orientation,
which is appropriate when the magnetic coherence length is much larger
than the droplet diameter, i.c., when the external field is weak enough
not to induce any alighment in the droplet in itself.

3.1 Orientational fluctuations

Let us first consider spectra in the absence of translational diffu-
sion, or, equivalently, spectra of large enough nematic droplets (with
R > \/6Dty, where D is the diffusion constant) in which this kind of
molecular motion is not very influential. The only relevant molecular
dynamics is now caused by fluctuations of long molecular axes a around
the director n. In order to obtain a spectrum with a suflicient resolution,
it is necessary to simulate a relaxation signal G(t) that is long enough,
i.c., lasting for several NMR cycles of duration g each. Comparing the
time scales of molecular fluctuations and NMR, i.e., {p and to, it is ev-
ident that there should be about 10° molecular fluctuations per NMR
cycle. This relation between ¢y and ¢p did not allow us to generate a
sufficiently long G(¢), as, for technical reasons, we only had the data for
1024 successive MC spin configurations available. Therefore, generating
G(t) we decided to update the spin configuration from the MC data less
frequently than required by the natural time scale ¢y in order to cover
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a long enough period in time. This approximation is not of essential
importance given the already mentioned arbitrariness in the MC time
scale.

In the diffusion-less limit we updated the spin configurations inside
the nematic droplet 8 times per NMR cycle, which is much less than the
natural scale given above. This enabled us then to generate a G(1) signal
whose length is 1281y, yielding spectra with a resolution of 256 points
in the relevant (nonzero) part of the spectrum. It is possible to check
whether this frequency of configuration sampling is sufficient or not, by
comparing the scalar order parameter S deduced from the NMR spectra
and from the MC data itself. As the resulting spectra show some “noise”
because of the relatively small number particles within the droplet (N =
5832), a convolution with a Gaussian kernel of width 0.04éwg has been
performed to smoothen the spectra. For dwg ~ 27 x 100 kHz the kernel
width equals ~ 27 x 4000 Iz, which is well above the natural line width,
typically given by ~ 27 x 100 Hz.

In the following we consider nematic droplets with radial and bipolar
boundary conditions. According to Eq. (5), the full width of a doublet in
the spectrum equals 26wqS. In the perfectly aligned nematic phase with
S =1 the spectrum width amounts to 2dwg, but as soon as dynamic
effects are taken into account, the spectrum is narrowed, and molecu-
lar fluctuations effectively yield S < 1. The spectrum of, e.g., the radial
droplet, in which molecular orientations are distributed isotropically over
the whole solid angle, is equivalent to the Pake-type [25] powder spec-
trum consisting of two asymmetric peaks positioned at wy + %JwQS (see
the top curve in Fig. 5, left). Therefore it is possible to deduce the value
of S from the actual position of these peaks: in our case S ~ 0.72£0.02.
This is in very good agreement with the value S ~ 0.73 directly obtained
from the MC data by diagonalizing the “MC time”-averaged ordering
malrix for each of the spins and averaging the largest eigenvalues ob-
tained in this way over the whole droplet. This shows that even the
limited sampling of MC structures still reproduces the effect of molecu-
lar fluctuations sufficiently well.

The spectrum of the bipolar droplet in the no-diffusion limit differs
considerably from that of the radial droplet. If the NMR magnetic field
B is applied along the z-axis (i.e., the symmetry axis of the droplet), it
still has two asymmetric peaks, which, however, are now located approx-
imately at wz & dwpS. This reveals that indeed most of the molecules
are aligned parallel to B (see the top curve in Fig. 5, right. Evaluating
S from the peak positions gives S ~ 0.74 £ 0.02, while calculating S
directly from the MC data yields S ~ 0.76. Again the agreement of the
two estimates is good. In general bipolar symmetry axes in droplets of

I(w) (arbitrary units)

A=8
-1 05 0 05 1 -1 05 0 05 1

(0—w)/dw, . (w—ru)/éal.Q

Figure 5. *H NMR spectra of the radial (left) and bipolar droplet (right) for different
values of the diffusion parameter A: A = 0 corresponds to the no-diffusion limit, while
A = 32 corresponds to the fast diffusion limit. Radial droplet: The Pake-type powder
spectrum obtained for A = 0 collapses into a single line centered at zero quadrupolar
splitting for A = 32. Bipolar droplet: The magnetic field is aligned along the bipolar
symmetry axis, which results in a spectrum consisting of two lines both in absence of
diffusion and in the fast diffusion limit.

a PDLC sample can have arbitrary spatial orientations. Summing up
contributions originating from droplets from all over the sample then
yields a spectrum similar to the Pake-type powder spectrum [23] (an
example will be shown in the last Section). If, however, the process of
nematic droplet formation in a polymer matrix has occurred in a sulfi-
ciently strong external field, the bipolar droplet axes are aligned along
the field direction. This frozen-in alignment can be retained also after
the field has been switched off [11], which then corresponds to the case
considered here. We further assume the direction of the spectrometer
magnetic field to coincide with the bipolar dropiet axes.




3.2 Translational diffusion

In addition to fluctuations of the long molecular axes we would now
like to include also translational molecular diffusion into the analysis.
Let us consider, for simplicity, the case in which the diffusion is charac-
terized by a single motional constant (the diffusion tensor is isotropic),

e., the probability for a molecular diffusion does not depend on the
local orientation of the director. In a bulk unconstrained nematic phase
the diffusion anisotropy can be typically up to Dj/Dy = 2, with D),
being measured along the director and D, perpendicular to it [11, 28|.
Our tests indicate, however, that the inclusion of anisotropic diffusive
process into the simulation alters the spectra only negligibly. Moreover,
in a thin subsurface layer translational diffusion is affected by the pres-
ence of the confining substrate as well [29]. Ior now, however, we are
going to ignore spatial inhomogeneities in the diffusive process and the
study of these effects will be postponed until the last Section.

Tsotropic translational diffusion has been simulated by a simple ran-
dom walk process in which each spin — representing one or more ne-
matic molecules — jumps to one of its nearest neighbor sites with equal
probability [11]. After the diffusion jump has been performed, the spin
acquires the orientation of the local director at the new coordinates.
Calculating G(t) we have, like in the diffusion-less case, updated from
the MC data the spin configuration inside the droplet 8 times per NMR
cycle. Now additional diffusion steps have been added in between these
structural updates, with their number A ranging from 1 to 32. In this
last case the spectra are completely motionally averaged due to diffusion
effects since for A = 32 each of the spins exhibits a total of 256 jumps
within the duration of one NMR cycle. This already corresponds to the
fast diffusion limit with I < 1.

Consider now the case of radial boundary conditions. Fig. 5, left,
shows a sequence of radial droplet spectra, ranging from the no-diffusion
limit (A = 0) to the fast diffusion limit (A = 32). In general, for any
type of boundary conditions the fast diffusion spectrum consists of two
lines centered at wZ + \(wQ> |, where the average frequency is given by
(wa); = £dwg S (3[3cos?O(rs) — 1));. Tf the diffusion is fast enough so
that molecules dlﬁuse through a large enough portion of the droplet,
in the radial configuration where (wg); = 0 holds, the two lines should
coalesce into a central line (zero quadrupolar splitting). Inspecting the
simulated spectra (the sequence in Fig. 5, left), it is evident that this
indeed happens. It is possible to deduce thc value of (wq); also directly
from the MC data, yielding (wg); ~ 0.03.
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Repeating the same analysis for the bipolar droplet, we observe that
the two lines in the spectrum do not merge into a single line, as just
observed for the radial droplet when moving from the slow into the
fast diffusion regime (Fig. 5, right). This happens because now we are
dealing with an ensemble of molecules whose orientational distribution
is spatially anisotropic. Hence, (wg); # 0 should be expected, unless (by
coincidence) the relative orientation of the external magnetic field and
the majority of nematic molecules yields wg ~ 0 already in itself. This
is, however, not the case for the spectra shown in Ilig. 5, right: here
(w)s — (0.61 £0.02) dwe from the peak positions and 0.59 6w from
the MC data.

As indicated before, diffusive processes are expected to be more im-
portant in small droplets than in large ones. Therefore it is convenient
to express the limit between the slow and fast diffusion regimes in terms
of the droplet size, keeping the value of the diffusion constant fixed (e.g.,
to D ~ 1071 m?/s). This can be done since the spins used for modeling
the nematic can be interpreted also as close packed clusters of several
(up to ~ 100) molecules [6]. Putting the droplet radius R as an estimate
for lhe characteristic length over which n(r) changes considerably and
th = ~ 107% 5 give R = /6Dly ~ 75 nm. Hence, for this particular
(hol(e of D and {p in droplets with R > 75 nm diffusive effects can be
neglected while in those with R below A~ 75 nm this cannot be done.

Lining up spectra for the two different types of boundary conditions
and comparing them shows that in the slow diffusion limit it is always
possible to identify the radial structure because of its characteristic Pake-
type spectral shape that does not depend on the direction of the external
magnetic field. The spectra of the bipolar droplet, on the other hand, de-
pend significantly on the magnetic field direction since the corresponding
director configurations are anisotropic due to net molecular alignment.
All these conclusions hold also in the fast diffusion regime, except that
the Pake-type spectrum of the radial droplet collapses into a single line
at zero splitting, again regardless of the magnetic field direction. The
diffusion-averaged spectra of the bipolar structure show two peaks at
nonzero splitting, unless, again, the majority of the spins is lying at a
“magic” angle with respect to the magnetic field direction.




4. External field effects

In presence of an aligning external field the Hamiltonian for our model
system consisting of N spins can be written as

N
Uy = —¢ Z Po(cos i) — en ZPQ(C()S 3, (8)

(i<5) i=1

with cos 3; — f-u;, where f is a unit vector in the external field direction.
Further, n is a dimensionless constant describing the strength of the
coupling with the external field. In the magnetic field case 1 is defined
by en = xaVoB?/3 10, where B stands for the magnetic induction, y, =
X|| — x. is the anisotropy of the microscopic magnetic susceptibility
(|| and L referring to the direction of w;), po the permittivity of the
vacuum, and Vp the volume of space belonging to one molecule or spin
(see, e.g., 16]). For n > 0 (xa > 0) nematic molecules (particles) are
aligned along f. In order to influence the molecular alignment inside the
droplet significantly, the external field has to be strong enough so that
the characteristic length of the field-induced distortion — the magnetic
coherence length ¢ o 1/ B [28] — becomes comparable to or smaller than
the characteristic dimension of the confined system, in our case simply
the droplet radius R. In an experiment with an aligning magnetic field
it is usually the NMR spectrometer field itsell taking the role of the
external field introduced in the Hamiltonian (8). Iere, however, we
still distinguish between the “weak” NMR spectrometer field and the
“strong” external field of variable strength, responsible for the additional
molecular alignment.

Note that although above we decided to refer to magnetic field effects,
in a real experiment one can more easily achieve the high field strengths
required to align nematic molecules by applying an electric field [8, 14,
28]. Matching aligning effects in the electric and the magnetic case, for
a given nematic species one can translate any magnetic field strength
(or B) into an equivalent strength of the electric field (£) [6]. In the
electric case we then have en — e,eqVpFE?/3, where ¢, — €| — €L s the
microscopic anisotropy of the dielectric constant and ey the dielectric
constant of the vacuum.

4.1 Radial droplet

‘We now turn to radial droplets for which, in absence of external fields
(with n — 0) and for T* — 0.8 the “hedgehog”-like structure is stable. As
discussed above, the spectrum of the radial droplet for n = 0 is the Pake-
type powder pattern consisting of two asymmetric peaks at i%ﬁwQS [25],
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Figure 6. °I1 NMR spectra of the radial droplet in the nematic phase at T* — 0.8
for different values of field strength 7; no-diffusion limit (a), fast diffusion limit (b).
A hedgehog-to-axial structural transition occurs with increasing 7. All spectra have
been normalized so as to obtain same peak heights.

as shown in Fig. 6 (a) for the diffusion-less case. Applying an external
field with > 0, the radial “hedgehog” structure containing a point-
like defect transforms into an axially symmetric structure with a ring
defect. A sequence of resulting NMR spectra is shown in Fig. 6 (a). For
strong external fields with 77 > 0.2 the Pake-type pattern transforms into
a spectrum with two narrow peaks and this indicates that for n > 0.2
most of the molecules are aligned along f, except for those lying close
enough to the polymer substrate.

To gain more insight into field-induced changes of NMR spectra, it
is convenient to investigate nematic ordering layer by layer [5] from the
center towards the droplet surface, calculating the local nematic order
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Figure 7. Order parameters calculated for the radial droplet at 7% = 0.8 (nematic
phase). TLocal nematic (S, leff) and external field ({P)p, right) order parameter
as a function of the distance from the droplet center. Cu are plotted for (top
to bottom): n = 1, 0.5, 0.2, 0.05, 0.03, 0.02, and 0, respectively. The defect core
transforms into an aligned structure. The molecular alignment for n = 0 is depicted
schematically as inset.

parameter S and the external field order parameter (I%)g. Recall that
the parameter S gives information on the degree of nematic ordering with
respect to the average local molecular direction (the local director n).
The parameter (F%) g, however, is defined as (P)p = (‘5(3 cos? 3, — 1)),
with cos 3; = f - u; and the brackets (...); representing the time and
ensemble average over orientations of molecules (spins) within a given
spherical layer. Contrary to S, (P2)p contains information on molecular
ordering along a fixed direction — determined by the external field
and thereby reflects also spatial variations of the nematic director. Note
also that the number of spins within a certain shell increases rapidly
when moving from the droplet center towards the surface (from 8 spins
in the central shell to 1392 spins in the outermost shell). The maximum
variance of S (up to 6% in the bipolar and up to 30% in the radial
case), however, usually occurs in intermediate shells or even close to the
substrate. In these regions the aligning effects of the substrate conflict
either with the ordering effect of the external field or with the parallel
aligning tendency of the nematic-nematic interaction. The competition
of these effects may result also in a slight decrease of S. A calculation
of the parameter S (Fig. 7, left) for n = 0 shows that the value of S in
the center of the droplet is nonzero but considerably smaller (~ 0.32)
than the value obtained in the intermediate and surface layers (more
than ~ 0.75). This confirms the existence of a small (~ 4 molecular or
“ciuster” dimensions diameter) and fairly disordered defect core.
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Increasing the field strength, the degree of ordering in the center
increases significantly and the molecules of the core align along the
field direction (compare with order parameters S and (I%)g plotted in
Fig. 7). There is no critical field characterizing the transition between
the “hedgehog” and the aligned structure: the size of the aligned core
increases gradually with the increasing field strength [6]. At the same
time, surface-inducedradial order persists in the outermost molecular
layers, which results in a strong decrease of the order parameter (P)p
(I'ig. 7, right) in the surface region. The thickness of this region is again
roughly equal to the field coherence length &. In the intermediate regime
with 0 < 1 < 0.2 the spectra are composed both of the Pake type con-
tribution originating from the surface layers and of two narrow peaks
being a signature of the field-ordered core. With increasing n the latter
contribution prevails, as it is clearly evident from Fig. 6 (a). It is possi-
ble to check the agreement of values for S deduced from peak positions
and from MC data [16].

In the fast diffusion regime the spectrum of the radial droplet for
n = 0 consists of a single line located at (wg) = 0 since the molecular
orientational distribution is spatially isotropic [11]. As soon as there is a
preferred direction (like in a strong field), (wg) = 0 no longer holds and
the spectrum splits into two narrow and symmetric peaks. Fig. 6 (b)
shows the fast diffusion spectra for radial boundary conditions. As ex-
pected, we observe a single line in the spectrum only if the external field
is off or relatively weak with n < 0.02. Increasing the field strength,
the spectrum gradually transforms into the two-peak pattern described
above. The comparison of peak positions and (wg) calculated from MC
data gives a fairly good agreement of the two estimates.

4.2 Bipolar droplet

In the bipolar droplet the local anchoring easy axis is directed tan-
gentially to the local droplet surface, while it is also lying in a plane
containing the droplet symmetry axis. Suppose also that the directions
of the NMR spectrometer field and of the external field match with the
symmetry axis of the droplet, here denoted by z. For all droplets in a
real PDLC sample this can be achieved by applying an external magnetic
field of sufficient strength during the droplet formation process [11]. Con-
sider again the limit without translational diffusion and assume also that
there is no external field applied (7 = 0), except for the weak spectrome-
ter field that anyway does not disturb the nematic director configuration.
Again, the reduced temperature was set to 7% — 0.8. The results show
that a considerable portion of nematic molecules — especially those in
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the droplet core is directed approximately along the spectrometer
field, which results in a spectrum consisting of two well-defined peaks
[Fig. 8 (a)] situated almost at maximum quadrupolar splitting dwg, re-
duced by the factor S due to fluctuations ol molecular long axes [see
Eq. (5)]. These peaks are located at wg/dwg &~ £(0.73 £ 0.01), which
roughly suggests that S =~ 0.73. Unless noted otherwise, the error in S
arising from the determination of peak positions in all following cases
equals +£0.01. It is interesting to notice that the determination of S
directly from MC data yields S ~ 0.76 £ 0.04 and then the agreement
of the two estimates is rather good.
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Figure 8. °H NMR spectra of the bipolar droplet in the nematic phase at T = 0.8
for different values of the external field strength (o< \/7); no-diffusion limit (a), fast
diffusion limit (b). The quadrupolar splitting increases with increasing 7. All spectra
have been normalized so as to obtain same peak heights.

Increasing now the external field strength to yield n = 0.2, the two
peaks in the spectrum move towards larger |wg, i.e., to wg/dwg & £0.78
and become narrower. The MC data now yield S ~ 0.79 £0.03. As it is
evident from Fig. 8 (a), this trend continues also in even stronger fields
with 7 = 0.5 (wg/dwg ~ £0.81) and n = 1.0 (wg/dwg ~ £0.84). The
corresponding MC-data values for S are then 0.81+0.02 and 0.84+0.015,
agreeing perfectly with the values deduced from the spectra. Note that
already for n — 0.2 the external field is extremely strong: considering the
magnetic case and taking € — kpTn;/1.1232 &~ 0.023 eV (with Tn; ~
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300 K), the macroscopic anisotropy of the magnetic susceptibility x,S ~
1075, and assuming a single spin to represent a cluster of up to 100
nematic molecules of volume 1 nm® each, we obtain as much as B ~
150 T. If we used an electric instead of the magnetic field to align the
nematic, the corresponding field strength for a typical liquid crystal
with €,5 &~ 1 and for same 1 would be & 45 V/um, which is — like in
the magnetic case — rather difficult to be implemented experimentally.
Tt must be stressed, however, that strong external fields are required
to induce a detectable distortion because the simulated droplet is still
rather small and because surface anchoring was chosen strong [16].

The S-profiles for the bipolar droplet in the nematic phase for 7% =
0.8 are displayed in Fig. 9, left. They indicate that the degree of nematic
ordering is almost constant throughout the droplet core with S ~ 0.74
when the external field is absent, while it increases to S ~ 0.82 in the
surface layer due to ordering effects of the polymer substrate. Applying
the field, the degree of molecular order inside the core increases, if com-
pared to the case without field; e.g., for n = 1 even to S &~ 0.84. The
profiles of the field order parameter (P2)g are plotted in Fig. 9, right.
The corresponding curve for n = 0 shows that already in absence of the
field there is net molecular alignment along the z-axis, which agrees with
the imposed bipolar boundary conditions whose symmetry axis matches
with z. The curves for n > 0 show that with the increasing field strength
more and more molecules (spins) orient along z (i.e., along f), thereby
increasing the size of the droplet core where the nematic liquid crystal
is almost undistorted and n||z. The thickness of the distorted region is
related to the external field coherence length & and is obviously micro-
scopic because the applied field is extremely strong.

According to the above observations, the increase of the quadrupolar
splitting wg in strong fields can be attributed both to the overall increase
in the local degree of ordering, i.e., to an increase of S — as observed also
experimentally [30] —, and to the additional molecular alignment along
f resulting in an increase of (Pa)p = (P2(c0s8)); see Eq. (5). Also the
narrowing of the spectral lines is related to the increase of (P)p since
in the droplet core the bipolar configuration is replaced by the “aligned”
one. The spectral line narrowing further follows from changes in the
distribution of local S(r). In fact, in strong fields the field-enhanced
“bulk” value of S approaches the surface-induced value and thus the
distribution of S becomes narrower.

Considering now I'ig. 8 (b) and the spectra of bipolar droplets in the
fast translational diffusion limit (or, equivalently, in small enough ne-
i ll-defined lines

v given by
-y gtven by
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Figure 9. Order parameters calculated for the bipolar droplet at T* = 0.8 (nematic
phase): local nematic (S, left) and external field ((P2)gp, right) order parameter as
a function of the distance from the droplet center. Curves are plotted for (top to
bottom): n = 1, 0.5, 0.2, and 0, respectively. External field enhances the degree of
nematic ordering (left) and increases the size of the aligned core (right). The molecular
alignment for = 0 is depicted schematically as inset.

(wo) = Hdwg (% [3(u; - Bo/Bo)? — 1])i, where (...); represents the aver-
age over fluctuations and diffusive motions of all molecules within the
PDLC droplet [11]. The quantity {(wg) can be calculated also directly
from MC data and the agreement with actual peak positions is very
good.

5. Many-droplet sample

All the cases treated so far concerned only a single PDLC droplet. Tn a
real sample, however, there are many droplets, all of them contributing
to the macroscopic response of the system. In the following we will
focus on a system of many bipolar droplets, with their symmetry axes
oriented randomly. Macroscopically, such a sample behaves as isotropic
although the constituent bipolar droplets are not. Then, in the spectrum
(representing the collective response from all droplets) one should expect
to see the Pake-type pattern — characteristic for isotropic orientational
distributions — instead of the two-peaked spectrum obtained for a single
droplet. In an experiment, the two-peaked spectrum can be obtained
only if all bipolar symmetry axes are preliminarily aligned by a strong
external electric or magnetic field.

Although we only have the MC data for one droplet available, the
individual droplets in the PDLC sample act independently and thus it
is possible to simulate the effect of randomly oriented droplet symmetry
axes by using the unaitered singie dropiet data and by assuming to have
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Figure 10. Spectra of 1000 bipolar droplets at 7% = 0.8, with symmetry axes
oriented randomly: no diffusion (a), fast diffusion: inhomogeneous (b) and homoge-
neous (c).

a random distribution of spectrometer magnetic field directions [21].
Since we simply “clone” the data for a single droplet to model several
droplets, this certainly results in unphysical correlations between particle
orientations in different droplets, but at least in cases with diffusion this
should not be of great importance since inter-droplet correlations are
smeared out by independent diffusion paths in each droplet. Note that
now spectra show much less noise than for a single droplet and it is not
necessary to perform smoothening convolutions.

T'ig. 10 (a) shows the spectrum of 1000 bipolar droplets without dif-
fusion at T* = 0.8 (nematic phase). Tt presents a Pake-type pattern,
as expected, with peaks positioned at £0.376wg. This suggests that
S & 0.74, which is close to S = 0.73, a value deduced from peak posi-
tions for a single bipolar droplet. In the spectrum, fast and homogeneous
diffusion again results in a Pake-type pattern [Fig. 10 (¢)]. The ratio of
line widths measured peak-to-peak in cases with and without fast diffu-
sion should be equal to that calculated for a single bipolar droplet. For
a single droplet this ratio is estimated by 0.83, while for an array of 1000
droplets we have 0.80, indicating that the agreement is good.

However, as suggested by experimental results, in a thin subsurface
layer molecuiar diffusive motion is hindered, which resuits in a signif-
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icant reduction of the effective diffusion constant D (even by a factor
of 3 x 10%) [29]. Simulating diffusion, we decided to take into account
also this slow-down effect, setting the thickness of the subsurface layer
to roughly one particle dimension (up to ~ 5 nm), thereby leaving 1608
particles (out of 5832) in the subsurface region. Then the rate of dif-
fusive moves within this region was reduced and the same reduction
factor was assumed also for moves entering or leaving the surface layer.
Inspecting the resulting spectrum [Fig. 8 (b)], it is still similar to the
Pake-type pattern, however, with less width reduction than in the ho-
mogeneous diffusion case. In addition, at splittings slightly larger than
those corresponding to the main peaks, two “shoulders” appear. The
spectrum shown in Fig. 10 (b) actually consists of two super-imposed
Pake-type patterns. The first one comprising the two main peaks
— is well-pronounced and originates from central droplet regions where
diffusion is effective. The two “shoulders”, on the other hand, are the
main peaks of the less pronounced, but not diffusion-narrowed second
Pake-type pattern representing the response from droplet surface layers.
Note that the “shoulder” and no-diffusion peak positions [Fig. 10 (a)]
match again.

6. Conclusions

We have described lattice spin models for the simulation of polymer-
dispersed liquid crystals. The biggest advantage of Monte Carlo simula-
tions is the possibility of investigating the system at a microscopic level,
and to calculate thermodynamic properties and their specific order pa-
rameters suitable for different types of PDLC. Molecular organizations
can be investigated by calculating the order parameters point by point
across the droplet. Moreover, it is possible to calculate experimental
observables like optical textures and, as discussed here, 2H NMR line
shapes. We have given an overview of the method and some applica-
tions to models of PDLC with radial and bipolar boundary conditions,
and considered the effect of orientational and translational diffusion on
the spectra. We have examined in particular under what conditions the
NMR spectra of the deuterated nematic can provide reliable information
on the actual boundaries present in these submicron size droplets.
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