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A Monte Carlo study of a Lebwohl-Lasher lattice model with anisotropic interaction is
presented. Six different values of out of plane to the in-plane coupling ratio have been
taken into account. Comparison with mean field prediction and with analytic results,
when possible, are made.
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1. Introduction

Computer simulations represent a useful tool to study phase transitions.! In par-
ticular they have been extensively applied to investigate the physics of anisotropic
fluids ( model liquid crystals) where the prototype nearest neighbours model is that
originally due to Lebwohl and Lasher (LL).2 In this model the particles are placed
at the sites of a cubic lattice and interact through a pair potential:

Uij (B) = —e€ij Pa(cos Bi;) (1)

where ¢;; is a positive constant that takes the value ¢ if i and j are nearest neighbours
and 0 otherwise; P; is the second Legendre polynomial and S;; is the angle between
the symmetry axis of the ith and jth particles. The LL model is well studied and
it has been found to give a weakly first order orientational phase transition at the
reduced temperature® kT/e = 1.1232 with characteristics similar to those of real
nematics.

Some time ago we studied an anisotropic version of this model where the po-
tential differs in strength for the four horizontal and the two vertical neighbours.*
We considered various values of the out of plane to the in-plane coupling ratio
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6 = ¢ /ey starting from a LL model (§ = 1) to reach the limiting situation of a two-
dimensional lattice, for which a true phase transition does not exist. This system
has recently received a great deal of attention from various researchers.’~7

In this work we wish to study the other limiting case where the interactions in
the plane decrease and eventually tend to zero. This model could be appropriate to
colummnar systems formed by a central core surrounded by a suitable number of alkyl
chains of a given length. The interaction between molecules in different columns
becomes weaker and weaker as the chain length increases and the interacting cores
are more spaced (Fig. 1). In the limit the system reduces to a set of one-dimensional
lattices for which an analytical solution, showing the absence of a phase transition,
has been obtained by Vuillermot and Romerio.2 This one-dimensional solution has
also been verified by a MC study of the orientational pair correlations of the model
and their size dependence.

w

Fig. 1. A schematic representation of a lattice model of a columnar system. The interaction in
the plane, denoted by the coupling constant ¢ , is inversely proportional to the chain length.

In the present simple model system with anisotropic second rank interactions
we have the following N particle hamiltonian:

—Un = Y (en)ijPalcos Bij) + Y (e)i Palcos Bi;) (2)

(i.3)» (5,7}

where we consider a simple cubic lattice and the sums are extended, respectively, to
nearest neighbours in the same laboratory horizontal plane (i.e. with interparticle
vector 755 || X, Y) and to neighbours along the vertical, Z axis. The parameter
€ = €1 /¢ gives the relative strength of the two interactions and when £ = 1 the
model reduces to the usual LL one. Decreasing £ we have a weakening of the in-plane
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coupling and at the limit § = 0 the lattice becomes, as already mentioned, a collec-
tion of independent linear chains, that is a set of one-dimensional LL lattices.3®

In this paper we briefly discuss the mean field theory predictions for the model,
followed by the results of a set of MC simulations for six different values of the
coupling anisotropy £. Comparisons are made with available simulations®® and
with mean field theory.

2. Mean Field Theory

The potential of mean torque acting on a particle by effect of all the others in the
system is obtained from Eq. (2) in a standard way!? as:

U(B) = —(2¢) + 4eL ){P2) Py(cos B) ®3)

where S is the angle between the molecule and the director and we have assumed
(P2) to be homogeneous throughout the sample. We can rewrite Eq. (3) as:

ue) _ — 2k 2+ 4)(P2) Palcos ) )

where § = el/e" = 1/6. This compares with the LL potential, i.e.:

UB) _ ze

T = —kT(Pz)PZ(COS B %)
where z (here z = 6) is the coordination number and we can observe that at
molecular field theory level the effect of changing the in-plane coupling is just a
renormalization of the temperature. We have an effective 2/ = 2 + 4¢ and, instead
of kT /e, an effective temperature:

(1) = L QL) ©)
I
then
(T = (T (L) = 0.1872(2 4+ 46) (1)

Apart from this renormalization all the properties of the transition, including
the first order character are predicted to be unchanged by simple mean field theory.

3. Monte Carlo Simulations

We have studied a system of N = 10 x 10 x 10 particles for six different values of
£, ie. £ =0.01, 0.02, 0.05, 0.1, 0.2, 0.5.
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The simulations were meant to be completely independent, so in each case the
run at the lowest temperature studied has been initiated from a completely aligned
system. The calculations at the other temperatures have been started from an
equilibrium configuration at the nearest lower temperature.

The updating procedure of the lattice follows the standard Metropolis
prescriptions!! employing periodic boundary condition and a controlled evolution
step so to have a rejection rate not too far from 0.5.12 We have used at least 22000
equilibration cycles far from the transition and 30000 in the pseudo critical region.
Apart from equilibration, production runs were also of varying length, according
to the distance from the transition. Close to the pseudo phase change sequences
as long as 20 Kcycles have been used. Each calculation was divided in chains of
1000 to 2000 cycles. Statistical errors were estimated as standard deviations from
the average over these runs. During the production run various observables have
been calculated in addition to the internal energy and second rank order parameters
calculated at every cycle as already described. Each property of interest, A, is eval-
uated at every cycle. After a certain number of cycles m; ( typically between 1000
and 2000) an average A” is calculated thus providing an effective coarse graining of
the trajectory. A further grand average is then computed as the weighted average
over M such supposedly uncorrelated segments. The attendant weighted standard
deviation from the average o4 is also calculated and gives the error estimates shown
in the figures.

4. Main Results

We have calculated, for each simulation, the energy, specific heat and second and
fourth rank order parameters. Pair correlation coefficients, again of second and
fourth rank, have been calculated, at selected temperatures, as described in Ref. 11.

4.1. Energy

The energy of the system is computed at every cycle because it is the essential
information needed for the Monte Carlo procedure. In Fig. 2 the dimensionless
single particle energy U* = (Un)/N¢) versus the reduced temperature T* = kT'/¢y
is shown. :

The curves are well separated for the higher values of £ starting, of course,
from their respective minimum energy configurations corresponding to completely
aligned systems. Indeed the average energy per particle for the simple cubic lattice
is:

U = _£2_'t24_5)02 (8)

in terms of the short-range-order parameter g3 = (Py(cos f;;)) with 4,j nearest
neighbours. We notice that the results for € = 0.01 are quite close to the analytic
solution for the one-dimensional lattice.
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Fig. 2. The energy vs. temperatures for the various system studied. The continuous line is the
analytic result for £ = 0.3

4.2. Heatl capacity

The dimensionless heat capacity, Cy,, is obtained by differentiating the average
energy with respect to temperature as previously described.? In brief, the energy
values are interpolated and smoothed using a five point orthogonal formula before
performing the numerical differentiation with an inversion method on the energy
written as an integral of the heat capacity with respect to temperature.

For the case { = 0., i.e. the linear lattice, the analytic formula for C}, has been

obtained by Vuillermot and Romerio®:

Co_1_3 [3 1 1 uf[3)\_ 3 uf /3
Nk~ 2 4T* 2T*[3 I]D (2T*)_8T*D (2T*) ©)

where D(z) is the Dawson function!? and is plotted as the continuous line in Fig. 3.
We also report in Fig. 3 the heat capacity Cj, results vs. the reduced temperature for
the cases studied. We notice that the peaks of the heat capacity, occurring at T* ¢,
become less pronounced as the strength of the interactions on the plane decreases.
The curve assumes the same behavior of the analytic result when £ = 0.013 and,
in particular, it is very similar to that obtained by a Monte Carlo simulation of a
one-dimensional lattice with 100 particles.®
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Fig. 3. The temperature dependence of the heat capacity C} for the model as obtained from PBMC
on a 10 X 10 x 10 lattice for the various {. The symbols used are as in Fig. 2. As a comparison we
report the analytic results® for £ = 0 (continuous line).

4.3. Order parameters

The second rank order parameter defined with respect to the instantaneous director
(i.e. (P2)x) is calculated by diagonalization of a suitably defined ordering matrix.!!
The calculation of the fourth rank order parameter (P}, has been performed ac-
cording to the algorithm we have previously proposed3; it shows a behavior similar
to that of (P2)x and is not reported here for reasons of space.

In Fig. 4 the (P;)) results vs. T*/T™c are shown. We have used this dimen-
sionless unit to compare the curves for the different values of £ since changing the
strength of the interactions corresponds to a change of the heat capacity maximum.
In such a way all the curves should be superimposable if the orientational transi-
tions had the same characteristics. We notice that only for £ = 0.01 and £ = 0.02
the (P2), curve is significantly shifted from the other.

As a comparison we report in Fig. 5 (P2)) for £ = 0.01 and the correspondent
results obtained from computer simulations of a one-dimensional lattice with 100
and 1000 particles.® We remind that the limiting situation to which the potential in
Eq. (2) tends upon decreasing the parameter £ to zero is a a set of 100 independent
one-dimensional lattices with 10 molecules. So, looking at Fig. 5, we can notice
that the results for the second rank order parameter for £ = 0.01 are in good
agreement with the previous simulations. In particular the behavior of the curve is
similar to the results obtained with 100 particles at low temperatures and becomes
superimposable to the N = 1000 data at higher temperatures.
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Fig. 4. The second rank order parameters (P2} vs. T*/T*c.
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Fig. 5. The second rank order parameters (P,), vs. T* for ¢ = 0.01 (full circles) and for a one
dimensional lattice with 100 (empty triangles), and 1000 particles (hourglasses).
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4.4. Orientational pair correlations

The two particle angular correlation coefficients GL(r) are expansion coefficients of
the rotationally invariant pair distribution.!! They give the correlation between the
orientation wj2 of two particles separated by a distance r. We calculate the first two
angular pair correlation coefficients G5 and G4 for all the temperatures. To do that
we select a number of particles as origins and calculate for each particle j falling
within a certain distance r the Legendre polynomial Pp(cos 8;;) with respect to the
origin particle {. Here we have also calculated the Gr(r) for the three different
directions X, Y, Z and in Fig. 6 the results for three sample cases are presented at a
temperature 7 = 0.22. We also report the analytic results at that temperature for
the one-dimensional lattice. We notice that, for £ = 0.5, the pair correlation function
G3(r) along the three different directions gives similar results for the X and Y axes
and that these are not much lower than the vertical component. Decreasing £ the
coupling in the plane is reduced and the difference becomes more evident (¢ = 0.2)
and eventually an absence of correlation in the plane (§ = 0.01) is obtained.
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Fig. 6. The three cartesian components of the second rank pair correlation coeflicient G2(r) plotted
against the distance r in lattice units at T* = 0.22. The results are for £ = 0.5 (full triangles),
€ = 0.2 (squares) and £ = 0.01 (full circles). The continuous line plotted in the Z plate represents
the analytic solution for the one-dimensional lattice.®

The large difference between the analytic results and the experimental ones for
£ = 0.01 is probably due to the fact that in the computer simulations data Gr(r)
have been obtained summing the contribution of linear chains constituted of only
ten particles.®
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5. Conclusions

We have studied an anisotropic version of the Lebwohl-Lasher lattice model with
varying strength of interaction for the four horizontal neighbours while keeping the
interaction with the two vertical ones fixed .

Decreasing the value of the parameter £ we have performed six independent
simulations of the model so as to approach a situation where the interactions in the
plane are absent and the system reduces to a set of independent one dimensional
lattices.

We have shown that changing the parameter £ in Eq. (2) not only corresponds
to a renormalization of the temperature as predicted for instance by molecular
field theory (Fig. 7) but also to a change of the characteristics of the orientational
transition. The effect is not observable up to a 1/20 in the value of the out of plane
to the in-plane coupling ratio.

Acknowledgments

We wish to thank CNR (Rome) for supporting this work under P.F. “Sistemi Infor-
matici e Calcolo Parallelo”, Sottoprogetto 1: “Calcolo Scientifico per grandi sistemi”
and MURST for general support.

O ¢210.0
0 $=1.33
0 £=1.00
A £=0.50
O £=0.20
¥ £=0.10
® £=0.05
0 $=0.02
® §=0.01

¢

Fig. 7. A plot of the temperatures where the heat capacity is a maximum, i.e. the pseudo transition
temperatures. The continuous line is the molecular field prediction, the dashed line is rescaled so
that it is exact at £ = 1.
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Table 1. The values of the heat capacity peaks from the energy derivative (C?)p and the temper-
atures at which they occur. For the case § = 1.0 we report the results of simulations performed
on't a 20 %.20 X 30 and® 30.% 30 X 30 lattices. Simulations? forf 0 are for N'= 40:and N = 100

(in brackets).
¢ ©p (@) Ret
000 132213 0.4 Ref. 8
000  128(1.35) 0.24 Ref. 9
- 0.01 1.42 0.28 This work
002 14 0.26 This work
005 21 022 This work
0.10 3.3 0.30 This work
0.20 3.7 044 This work
0.50 5.1 0.74 This work
1.00 17.87 1.127 - Ref. 14
‘_ 1.00 24.44 1.1232 Ref. 3
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