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We study a lattice system of biaxial particles interacting with a second-rank anisctropic
potential. We have performed detailed Monte Carlo calculations in the vicinity of the
prolate—oblate dual value of molecular biaxiality. Our results confirm the second-order
character of the transition in this limiting case.
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1. Introduction

Nematogen molecules are not uniaxial and could form, at least when the molecu-
lar biaxiality is large, a biaxial nematic phase where both the long and short axes
present long range order. As a matter of fact this biaxial phase has been predicted
to exist from Mean Field Theory (MFT)!? and from lattice®* and off-lattice® com-
puter simulations. (Juite recently we have not only confirmed this existence but
also determined the phase diagram and the full set of second-rank order param-
eters for a biaxial lattice model.? In surprising contrast with theory, experiments
have not yet shown, beyond any reasonable doubt, the existence of thermotropic
biaxial nematic phases. Indeed the various claims put forward were based on optical
observations and have recently been challenged by Deuterium NMR experiments,®
which are more straightforward to interpret.

The evidence now seems to show that large biaxialities A, approaching the theo-
retical limit A, = 1/+/6, which corresponds to the switching point from a distorted
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prolate to a distorted oblate ellipsoid, are required for the observation of a biax-
ial nematic. This is probably because the biaxial nematic phase, occurring at a
lower transition temperature than the uniaxial nematic one, competes with the
more ordered, smectic or crystalline phases and, given that the temperature range
of existence of typical nematics is about 10% from the transition,” it follows that
the observation is problematic except for the largest A. How close the molecular
biaxiality is to A; will depend on the detailed form of the (T, A) phase diagram
in this region. In practice, the shape of the biaxial region in the phase diagram is
reminiscent of a cusp with the biaxial nematic region becoming narrower near A..
It then becomes interesting to concentrate theoretical and simulation work in the
region close to A; of the phase diagram, and this is what we plan to do here. In
particular we concentrate on the dual point (also called bicritical Landau point)
and its immediate neighborhood to examine in detail (i) the character of the biaxial
to isotropic transition and {ii} the width of the biaxial cusp region. Qur tools will
be extensive Monte Carlo simulations as described in the next section.

2. The Model

Here we are concerned with the simplest rotationally invariant interaction between
a pair of biaxial molecules®*

Ulwis) = —ei{ Pa(cos Bis) + 2M[Riy(wis) + Rio(wis)] + 4N Ryp(wis)} (1)
We assume the particle positions to be fixed at the sites of a simple three-
dimensional cubic lattice with L particles on the edge, containing therefore a total
of N = L? sites. The strength of the interaction is given by e;;, taken to be a
positive constant, €, when particles ¢ and j are nearest neighbors and zero otherwise.
w = (a,8,7) is the set of Euler angles (we use Rose convention®) specifying the
orientation of a molecule. The potential depends on the relative orientation w;; of
the molecular pair, P, is a second Legendre polynomial and RL,, are combinations
of Wigner functions symmetry — adapted for the Doy, group of the two particles.
In particular the explicit expressions for the first few relevant terms are
3 1

_v 20 _ 2
P = 3 cos” 3 > (2)
1
R = —\/E:sin2 G cos2a (3)
2Y 2
R§2 = %‘/gsinz 3 cos 2y (4)
2 1 2 1 :
R%, = 1 {cos® B + 1) cos 2acos 2y — 3 cos 3 sin 2a (5)

A is the parameter that accounts for the deviation from cylindrical molecular
symmetry: when A is zero, the potential in Eq. (1) reduces to the well-known Maier—
Saupe or Lebwohl-Lasher? P, potentials, while for nonzero A the particles tend to
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align not only their major axes, but also their faces. The same model has been
studied on a fcc lattice by Luckhurst and Romano® for A = 0.2.
The biaxial potential in Cartesian form becomes
1

3
U=—¢ (§V33 —AWEB (Vi1 — Vaz) + A2 (Vig + Vin — Vig — Vi) — 5) (6)

where Vyy = (1, v)? and u,, vs, @ = 1,2, 3 are the three axes of the two interacting
molecules. The parameters ¢ and A will depend on molecular properties. In the
special case of dispersive interactions, both parameters can be expressed in terms
of the diagonal elements of the polarizability tensor « of the molecule. In this case

- 3 axx - ayy
A= \/;zazz - (az:c + O-'“y“y) (7)

€= (202, — (Ozz + ayy))a . (8)

As can be seen after a little algebra, the potential is invariant by simultaneously
changing the y and 2z axes of the molecules and substituting e, A with €/, X’

, (1+28Y
f—E(T) (9)

and

In the dispersion case this would correspond to exchanging oy, and ... The con-
dition A’ = A corresponds to A = 1/+/6 and is the so-called self-dual case.? This
means that for A > 1/4/6, that is for discotic molecules, one can change the y and 2
axes of the molecules and use the potential with the corresponding X' < 1/v/6 and
¢'. In other words for A > 1/+/6 there is a mapping of the system to another system
with A < 1/1/6 and the same potential, and all the thermodynamic results should
be the same {of course the temperature T = kT'/¢ will correspond to 7" = kT'/¢’).

3. Simulation Results

We have performed a set of independent simulations in the vicinity of the prolate—
oblate dual value of the molecular biaxiality A. In particular, different system sizes,
ranging from 512 up to 64 000 particles, have been studied. A standard Metropolis
algorithm!® with Periodic Boundary Conditions has been employed to update the
lattice.

Several thermodynamic observables are calculated: energy, heat capacity and
the full set of second-rank order parameters.? The lowest temperature simulation is
started from a completely aligned system; the following runs are produced in cascade
starting from an equilibrated configuration of the nearest lower temperature. At
least 60 000 equilibration Monte Carlo cycles (a cycle is a set of N attempted
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moves) have been discarded at each temperature. The averages have been calculated
on production runs of at least 40 000 cycles with runs of up to 200 000 cycles
for selected temperatures. As we have shown in Ref. 4 it is preferable to perform
simulations for A > 1//6 = 0.40825 and then map the results onto a rescaled value
of X in the region [0,1/v/6]. This is convenient because the uniaxial — isotropic
line in the transition temperature versus molecular biaxiality phase diagram appears
rather flat below the prolate—oblate dual value of A while the curve shows a rapid
increase above this limiting molecular biaxiality. Then in the range A > 1/ V6 even
a small variation of this parameter can produce a significant shift in the transition
temperature. Thus we have chosen to perform larger simulations on a 40 x 40 x 40
system for A = 0.40825,0.420, 0.45,0.5.

In Fig. 1 we show curves for Cy at A = 1/v/6, 0.420, 0.5 as obtained from
the larger system simulations (¥ = 64 000). For A = 1//6 the results of Cy are
superimposable moving from a system with 1000 particles* to one with 64 000
molecules. This is profoundly different from what is found for a first order {even
a weak first-order) transition like that of a three-dimensional Lebwohl-Lasher!!:12
and confirms that the orientational phase transition at A = 1/+/6 has a second-order
character. It can also be noticed that a small deviation {about 3%) in the molecular
biaxiality is sufficient to detect the second transition from a biaxial phase to the
nematic one. The temperature of this transition is shifted approximately 30% with
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Fig. 1. Heat capacity, C},, versus scaled temperature T* as obtained from the simulations. Re-
sults for A = 0.40825 (top), A = 0.420 {middle), A = 0.500 (bottom)} on a 64,000 spin system are
reported. The dotted lines represent the mean field predictions.
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respect to the nematic—isotropic one for A = 0.420. Then these simulations confirm
that the peak of the cusp denoting the biaxial region in the phase diagram, reported
in Fig. 2, is located at a lower temperature compared to the Mean Field Theory
prediction. Moreover the uniaxial-biaxial curves forming the cusp increase very
rapidly near A, and this confirms the difficulty in finding experimental evidence of
the hiaxial phase when using molecules with a molecular biaxiality not extremely
close to the self-dual value. The bottom plate in Fig. 2 shows in detail the phase
diagram of the transition temperatures versus the molecular biaxiality A in the
vicinity of the dual value where the limited amplitude of the biaxial nematic is
apparent.

The phase transition at the dual point was predicted to be second-order using
Mean Field Theory (MFT).I'2 However, this is of little value in itself given the
known limitations of MF Theory, which neglects pair correlations, in studying phase
transitions. On the other hand, our previous MC study had too few points and too
small a sample to assess this characteristic.

Here we have also looked at the order parameters, shown in Figs. 3-6 calculated
for N = 1000 and N = 64 000 lattices, for a value of molecular biaxiality A =
0.40825. The calculations have been performed using the procedure that we have

Fig. 2. The biaxial model phase diagram showing the reduced transition temperatures versus
molecular biaxiality A (top) and a close up in the vicinity of the limiting prolate—oblate value
{bottom). MC results are shown as diamonds (40 x 40 x 40}, full squares {10 % 10 x 10} and circles
(& x 8 x 8). Empty squares are points mapped from (X, T*) onto (X', T*') (see text). The triangles
at A = 0.2 are from Ref. 3. MFT results are shown as continuous lines, while dotted lines are just
a guide for the eye.
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Fig. 3. The second-rank nematic
lattice sizes.
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Fig. 4. The second-rank order parameter {R%,} as obtained from MC simulations on two lattice

sizes.
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Fig. 5. The second-rank order parameter (RZ,) as obtained from MC simulations on two lattice

gizes.
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Fig. 6. The second-rank order parameter {R%,) as obtained from MC simulations on two lattice
sizes.
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Fig. 7. The histogram of the energy per particle {/*} as obtained over 100 0600 MC cycles on a
40 x 40 x 40 lattice at two selected temperatures below and above the critical point.

introduced in Ref. 4. We see that the second-order character is confirmed by the
order parameters. We notice that for all the second-rank order parameters, the
curves, obtained for the two system sizes, only differ at high temperatures, due to
the isotropic statistical finite size limit for which the minimum value is of the order
of 1/v/N. A more stringent test of the character of the transition is obtained by
examining not only the average value of the order parameters, but a histogram of
the values obtained from the simulation. Far from the transition, the histogram
is expected to be a single-peaked Gaussian. However, near a transition we expect
a different behavior for a first-order transition, which is expected to present two
(ideally two equally populated) peaks corresponding to ordered and disordered
states and a higher order transition which should always show a peak. In Fig. 7 we
see that the histogram of {(I/*}, for a temperature above and below the transition
that we estimate to be at 7" = 1.09 + 0.03, does not present any sign of the double
peak observed e.g., for the LL model,'! even if a skewness is observed. Indeed the
histogram only supports the second-order character of the transition.
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4, Conclusions

In conclusion we have shown that for the biaxial LL model the biaxial-uniaxial
nematic transition only occurs within the useful temperature range of 10% of the
clearing temperature for values of biaxiality of less than 3% from the dual value
Ae =1 /\/(_3 Moreover we have provided computer simulation evidence that at A,
the transition is a second-order one.
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