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We present a computer simulation of a confined magnetic system. We study a Heisen-
berg model microsphere with radial boundary conditions, the influence of the homeo-
tropic surface alignment on the magnetic ordering inside the sphere and the consequent
changes induced in the thermodynamic behavior. Comparisons with the case of nematic
liquid crystal droplets are provided.

1. Introduction

The study of magnetic and nematic ordered systems in a restricted environment has
attracted much attention, also for the fundamental interest of the structure of their
topological defects.!~” The thermodynamic and microscopic behavior of mesophases
in confined systems is equally of great interest, as can be seen from the large amount
of experimental and theoretical work done on Polymer Dispersed Liquid Crystals
(PDLC). These new materials consist of nematic droplets embedded in a polymer
matrix and are used in technological applications as electro-optical devices.® Sim-
ilar systems constituted of magnetic grains suspended in an appropriate fluid or
polymer matrix form the basis of ferrofluids, see Ref. 9 and references therein. The
thermodynamic behavior of superparamagnetic particles in the Néel-Langevin limit
where the interaction of different magnetic grains is negligible has been studied by
various authors.!%!! Moreover new technologies for the preparation of microdroplets
of sizes as small as 10nm are becoming available!? even though knowledge of the
molecular organization inside is still limited. The ordering and the molecular orga-
nization inside the system result from the competition and combination of various
effects: the boundary conditions, the characteristics of the intermolecular potential,
the temperature and possibly the application of an external field.

From a theoretical point of view, PDLC have been studied using Frank elas-
ticity continuum theory of the Landau-DeGennes type!? and, at microscopic level,
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Monte Carlo (MC) simulations of lattice spin models have been performed.!* In
particular we have shown, in a recent series of papers, that MC can be profitably
used to investigate PDLC models under a variety of the different conditions above
mentioned.!®

As for magnetic systems, there are until now, to our knowledge, no microscopic
MC investigations of the influence of boundary conditions on the spin organization
and here we wish to start to tackle this point. The aim of the present paper is thus
to study finite spherical lattice spin systems of various sizes, from a few hundred to
several thousands of spins, by MC simulation to examine the effect of confinement
on the demagnetization phase transition and to calculate order parameters and
spatial correlations inside the droplet.

2. The Simulations

We consider a classical cubic Heisenberg model where the spins S;’s are three-
dimensional unit vectors, located at the lattice sites, and interacting through the
first rank pair potentiall®:

U,'j = —e,-,-Si . Sj
= —¢;j cos(fi;), (1)

where ¢;; is (for the standard isotropic ferromagnetic case) a positive coupling con-
stant, €, for nearest neighbors spins 7 and 7 and zero otherwise. A model magnetic
droplet is carved as a jagged sphere from the cubic lattice by considering all the
spins falling within a given distance from the chosen center. The radial boundary
conditions are mimicked assuming a layer of outside spins (ghosts) pointing toward
the center of the lattice. This homeotropic surface alignment enforces, especially
at low temperature, a point disclination at the center of the system and we have
recently applied the MC method to investigate the structure of this hedgehog core
defect.!”

The Heisenberg model is of course well studied in the bulk both by means of
approximate theories and computer simulations.'® It shows a second-order phase
transition from the ordered ferromagnetic phase to the disordered paramagnetic
phase at a reduced temperature T* = kT'/e ~ 1.442929.18

We have used microspheres cut out of cubic lattices of linear dimension L = 10
or 24, and containing N = 304 and 5832 spins respectively. These two systems are
surrounded respectively by 200 and 1352 ghosts. Some other particle sizes (N =
1472, 11752) have been simulated at selected temperatures to look at the scaling
with lattice dimension. :

The simulations at the various temperatures were run in cascade starting from a
perfect hedgehog system or from an equilibrated configuration at the nearest lower
temperature. A standard Metropolis algorithm!® has been employed to update the
lattice maintaining a controlled evolution?® with a rejection ratio not too far from
0.5. At least 30000 equilibrium cycles (i.e. N attempted moves) have been discarded
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before accumulating averages and production runs of at least 20000 cycles have been
used.

We have calculated several thermodynamic observables: energy, heat capacity,
magnetization, order parameters and pair orientational correlation functions. The
energy of the system is evaluated as a sum of pair interactions (Eq. (1)). The
dimensionless heat capacity C}; is obtained by differentiating the average energy
with respect to temperature as described in Ref. 21.
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Fig. 1. Heat capacity versus temperature for the two system sizes studied: N = 304 (empty

squares) and N = 5832 (full squares). Results for the bulk?? from a simulation of a 304 spin
droplet (triangles) with cluster boundary conditions are also reported for comparison.

3. Results

We show in Fig. 1 our results for the specific heat for the two grain sizes (squares).
We first notice that the results of the present model are consistent with a suppres-
sion of the phase transition. Similarly to the nematic case, the radial boundary
conditions greatly affect the energy and the C}, curves appear quite flat. In the
results of the larger simulations only a small broadened peak is present, slightly
below the bulk critical temperature (see Fig. 1).

These results are certainly a consequence of the surface alignment and are not
due to the spherical geometry or to the limited number of spins. This can be seen
from a comparison with the curve (triangles) for a small droplet containing 304 spins
but subject to boundary conditions that mimic the bulk, obtained using Cluster MC
as described in Ref. 22. We have shown in turn elsewhere that this system correctly
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reproduces the second order phase transition of the Heisenberg model as obtained
by various authors.16:18

We have determined the magnetization with respect to the instantaneous order-
ing direction, (M) = (P;)». This is calculated from the unit vector S;, and the
director d’ (i.e. the mean direction of the spins of all the system in the Jth con-
figuration) obtained from the eigenvector corresponding to the largest eigenvalue of
the ordering matrix. The average over K configurations then gives

(2)

1) K

We see that the magnetization of the whole system, shown in Fig. 2, is O(N~1/2)
at low temperature, where the effect of the boundary conditions dominates, because
the great majority of the spins point toward the center. The (P;)) remains at very
small values up to high temperatures where the spins are isotropically oriented.
However, increasing the temperature we can observe that the (P;)) curve tends to
grow (approaching the critical region, Tc =~ 1.44), and this could be due to the
increased freedom of the spins overcoming the effect of the boundary conditions.
This behavior is confirmed for both the two system size simulations even though
the smaller droplet results cannot be, as expected, lower than N -3,

Given that (P;), is rather uninformative, we have calculated, to quantify the
deviations from a perfect hedgehog configuration, another quantity that we call first
rank radial order parameter (P1)g defined as follows

(Pl N Z S r‘l-) 3 (3)

where N is the number of spins contained in the sphere, S; is the orientation vector
of the ¢th spin and r; is its radial vector. This order parameter expresses disordering
from the perfect star-like organization and is a maximum when all the spins point
toward the center. The (P;) g against temperature curve shows a classical decreasing
order parameter behavior (see Fig. 2(b)). The change of the spin organization from
a radial configuration to an isotropic one as a function of temperature is now more
evident from the simulation results for the larger sample.

We have also investigated how the order parameters change from the center of
the droplet to the surface dividing our microsphere into concentric shells in an onion
skin fashion.14b

The order parameters (P;)) and (P;)r have been calculated for these different
regions and are plotted in Fig. 3 as a function of . Schopohl and Sluckin? have
predicted that, for a magnetic system, the radial order parameter should saturate
linearly with r according to the existence of a point disclination at the center of the
droplet. The simulations support this prediction with results independent from the
system size, as shown in Fig. 4 for droplets with 304, 1572, 5832 and 11752 spins.
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Fig. 2. Magnetization (a) and radial order parameter (b) versus temperature for the two system
sizes studied. Symbols are as in Fig. 1.

The present case is thus markedly different from the nematic one for which a larger
ordered core consistent with a ring disclination is obtained.*'”

Another indication of the changing of spin organization across the droplet can
be glimpsed through the spin—spin correlation function of rank one, defined as

G1(r) = (P1(cos Bij))~ (4)

that gives the correlation between the orientations of two spins separated by a
distance r. Here we have investigated the correlation between the spins at a distance
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Fig. 3. Magnetization (a) and radial order parameter (b) from the center toward the surface in
lattice units r at T* = 0.5.

r from the center and those as near as possible to the center itself. In practice for
the calculation of pair correlations, the eight spins belonging to the 2 x 2 x 2 cube at
the droplet center are selected as origins and the pair correlations with all the other
particles within a certain range from the central cube are calculated. The overall
results for the radial pair correlation coefficients G,(r) are presented in Fig. 4 for
three selected temperatures (T* = 0.50,1.08,1.65) and for two system sizes. In a
uniform system the pair coefficient G, (r) starts from one and tails off to essentially
the square of the magnetization when the orientation of the two spins becomes not
directly correlated. Here the situation is quite different, since spins near the surface
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Fig. 4. Orientational correlation function versus distance in lattice units r. In (a) results for the
microsphere with 5832 spins at three different temperatures are shown. The size dependence at
T* = 0.5 is shown in (b).

have an orientation strongly influenced by the boundary layer of spins with pinned
orientations. The results confirm that the basic decoupling assumption for spins at
the center and at the interface holds for our droplet size. Clearly we expect these
results to also hold for large magnetic grains.

In Fig. 5 we show three equatorial sections for the N = 5832 droplet, two below
and one above the bulk critical temperature. From these snapshots it is possible to
have a direct view of the spin organization and to see pictorially the results expressed
quantitatively by the order parameters and correlation functions discussed above.
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Fig. 5. Equatorial sections of the N = 5832 microsphere at three selected T* = 0.62 (top),
T* = 1.20 (middle) and T* = 1.80 (bottom).

In fact, at the lowest temperature the point defect near the center of the droplet
is clearly identifiable. At increasing the temperature there is a smearing in the
influence of the boundary conditions and above the pseudo-critical temperature
region the spins are isotropically oriented.

4. Conclusions

We have performed computer simulations of magnetic nano-spheres with radial
boundary conditions. The centripetal alignment of the surface spins greatly affects
the spin organization inside the system with a depression of the heat capacity peak
consistent with an absence of a phase transition. The model could be useful in the
investigation of small metallic clusters with a limited number of atoms.?3
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