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1. Introduction

The investigation of phase transitions using computer simulations is extremely time
consuming even for simple lattice models.! Apart from the system size a very im-
portant aspect is the choice of boundary conditions (i.e., which environment should
be used to surround the sample) in order to minimize the surface effects on the
system and mimick bulk behavior.

Two standard choices are to use periodic boundary conditions (PBC) or to leave
free space around the box. The first method is ubiquitously used in simulations and
amounts to having exact replicas of the system, filling the space as required by the
range of the pair interaction assumed to exist between the particles. Although
greatly superior to a free space boundary, using periodic boundary conditions leads
to relatively large smearing and broadening of the dependence of the heat capacity
and of the order parameter on the temperature. This in turn means that relatively
large samples, with many thousands of particles, have to be used to locate the
transition even to a moderate precision.

Another possibility, introduced by Binder for the Heisenberg model,? is the Self-
consistent Monte Carlo (SMC) in which the interactions with the spins outside the
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sample box are replaced by interactions with an external magnetic field that couples
to the surface particles, and whose strength is adjusted self-consistently.

Yet another type of boundary condition is proposed in the Cluster Monte Carlo
(CMC) method,® employed here, originally developed to perform simulations of ne-
matic liquid crystal (LC) models. This method is based on replacing the missing
interactions at the sample surface by interactions with ghost particles whose orien-
tations are sampled from a distribution generated in accordance with the internal
ordering of the lattice using the Maximum Entropy principle.

The method has been applied to a number of LC models: the second rank
Lebwohl-Lasher Hamiltonian for nematics, a pure Py model,* and a ferroelectric
system with first and second rank interactions.® The results of all these simulations
are very satisfactory in the sense that they can be compared with larger lattice
simulations in which periodic boundary conditions have been employed.

Here we present an application of the Cluster Monte Carlo method to the clas-
sical Heisenberg model that we shall recall in the next section, in Sec. 3 we briefly
describe the CMC method whilst in Sec. 4 we present the main results of the sim-
ulations performed. A comparison with other recent simulations® is also provided.

2. The Heisenberg Model

This classical model, extensively studied using various approximate theories and
computer simulations,?%7 is defined on a simple cubic lattice by the pair Hamilto-
nian:

Ui; = —¢€i;S; - S;

= —¢ij cos(fij)

(1)

where S;’s are three-dimensional unit vectors (‘spins’) located at the lattice sites, €;;
is (for the standard isotropic ferromagnetic case) a positive constant, €, for nearest
neighbours spins ¢ and j and zero otherwise. The model shows a second-order phase
transition from the ordered ferromagnetic phase to the disordered paramagnetic
phase at a reduced temperature T* = kT /e = 1.45.°

3. The Cluster Monte Carlo
3.1. Generalities

As mentioned before the peculiarity of the CMC method is the use of a particular
type of boundary conditions where the space surrounding the simulation sample
is filled with a set of spins which have, on average, the same magnetization and
ordering properties of the spins inside the sample. To do this in a system with
nearest neighbour interactions, we add a layer of ghost particles that represent the
relevant part of the external world W, to the sample box B (see Fig. 1). Notice
that the shape of the box can be chosen quite freely and that it does not have to
fill space as with periodic boundary conditions. For instance, a spherical shape can
be chosen by suitably carving a sphere from a cubic lattice,® as we have actually
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Fig. 1. Visualization of lattices with CMC boundary conditions. The sample box (grey area) is
surrounded by a layer of ghost particles of the external ‘world’ W.

done here. This is schematically shown in Fig. 1.

The desired global average of a quantity A is written as an average over all the
external ‘world’ configurations of Monte Carlo averages calculated with this outside
configuration fixed, i.e.,

(A)e = ((A)w))w
~ (1/Mw) S (A - @

(W]

The Cluster Monte Carlo algorithm can then be schematically summarized as
follows:

— Calculate a set of relevant observables (order parameters, magnetization) inside
the sample box. In particular calculate the first L’ orientational order parame-
ters (PL), average of the Legendre polynomials Pp(cos 3;), where ; is the angle
between the spin S; and the preferred orientation of the system (the magneti-
zation axis or director).

— Obtain an approximate orientational distribution consistent with these observ-
ables using the maximum entropy principle.® The best Information Theory infer-
ence for the singlet orientational distribution of the particles outside the sample
based on the order parameters {(Pr)}, L = 0,..., L, and thus implicitly
assuming spherical or uniaxial symmetry is :

L
P(cos B) = exp Z arPr(cosB)| . 3)

L=0
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In practice in the present case we keep the first two relevant order parameters,
(P1) = (M) (magnetization) and (P,), so that the most likely distribution will
be of the form

explax P4 (c0s ) + a3 Pa(cos )]
Jo dBsin Bexpla; Pi(cos B) + az Pa(cos B)] ’

where the coefficients a;, a, are determined from the constraint that the available
A{PL) can be reobtained by averaging Py (z) over the distribution, i.e., by solving
the non-linear system

fy dBsin BPy(cos B) expla; Py (cos B) + az Py(cos B)]
Jo dBsin Bexp[a; Py(cos B) + az Pa(cos B)]

Jo dBsin BPy(cos B) exp[a; Py(cos B) + a3 Pa(cos B)]
Js dBsin Bexpla; Py(cos B) + az P(cos B)]
We use (...)r to indicate that the averages are taken with respect to the labo-

ratory magnetization direction. Notice that the coefficients a;1((P;), (P2)) and
az((P1), (P2)) are defined in a domain delimited by the inequalities

- P(cos p) =

(4)

(P = (5)

(P2 = (6)

2 ., 1 2 Nk

2 - < < |z =1 .

3P +3<(P) < [3(P2) + 3] ()
and these restrictions follow in turn from Schwarz’s inequality applied to the
specific trigonometric form of the first and second rank Legendre polynomials.®

— Generate the set of outside ghosts needed to define the boundary layer by
sampling from this distribution.

— Perform Metropolis Monte Carlo updates of the lattice,'® and monitor the
observables.

— When the observables change from the ones competing to the outside environ-
ment in a statistically significant way,3 repeat the generation of the outside
environment.

— Calculate a grand average of the previous results to get (A)g.

4. Simulation and Results

We have investigated the Heisenberg model using this Cluster Monte Carlo method
on a 8 x 8 x 8 lattice, and on jagged spherical droplets carved from lattices of linear
dimension L = 10, 16, 24, and containing 304, 1568, and 5832 spins, respectively.

The simulations were meant to be independent from each other, and were run in
cascade starting from a completely ordered ferromagnetic configuration or from an
equilibrated configuration at the nearest lower temperature. A controlled evolution
with a rejection ratio not too far from 0.5 has been maintained.!!
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We have calculated several thermodynamic observables: energy, heat capacity,
magnetization, the order parameters up to the fourth rank one, and the pair orien-
tational correlation functions.

4.1. The heat capacity

The dimensionless heat capacity C}, plays an important role in this kind of investi-
gation, if only because the phase transition is located by the temperature at which
its peak occurs. It is obtained by differentiating the average energy with respect
to temperature as previously described. In brief, here the energy values are in-
terpolated and smoothed using a five point orthogonal formula, before performing
the numerical differentiation with an inversion method on the energy written as an
integral of the heat capacity with respect to temperature.!? The overall results for
the heat capacity as obtained from the CMC of spherical samples are reported in
Fig. 2. The maximum of C}, occurs at T* = kT/e = 1.45 for all of the three cases
shown. The peak height does not change significantly but becomes sharper when
increasing the number of spins, as expected for a continuous transition.
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Fig. 2. Temperature dependence of the heat capacity for the three spherical samples studied using
the CMC method.

4.2. The magnetization

We have calculated the magnetization with respect to the instantaneous ordering
direction, (M) = (P,),, and with respect to the Z laboratory axis (M) = (P1)L.
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Fig. 3. The magnetization (M) calculated with CMC and a spherical sample with N = 304, 1568,

and 5832 spins.
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Fig. 4. The magnetization (M) obtained from a CMC simulation of a sphere with N=5832. Data

from PBC simulations of 8192 spins (WBV)7 and of 4096 spins (LD)® and SMC simulation of
4096 spins? are also reported.
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(M) has been calculated from the unit vector u;, specifying the spin orientation,
and the director d” (i.e., the mean direction of the spins of all the system in the Jth
configuration) obtained from the eigenvector corresponding to the largest eigenvalue
of the ordering matrix.® The average over K configurations then gives:

| XX
(M)A=WE > u-d?|. (8)
715

In Fig. 3, we show our results for the different system sizes. The results are in good
agreement with those of previous simulations performed using periodic boundary
conditions on 16 x 16 x 16 ¢ and 16 x 16 x 327 lattices, and the Self-consistent Monte
Carlo with 4096 spins? as can be seen in Fig. 4.

4.3. The orientational correlation functions

The spin-spin correlation function of rank one, defined as:

Gi(r) = (Pi(cos Bij))s (9)
gives the correlation between the orientations of two spins separated by a distance
r. It is calculated choosing a spin ¢ as the origin, and summing the contribution in
Eq. 8 for all the spins j falling at a distance r, repeating the calculation for a set of
origins. G1(r) then starts from 1 at distance r = 0, and decays to a plateau with a
value equal to the square of the magnetization if there is long range order.
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Fig. 5. The spin-spin correlation function plotted against separation r in lattice units as obtained
from the CMC simulation of a N = 8 X 8 X 8 system, at three selected temperatures.
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Using PBC, the results of G;(r) are correct only up to » = L/2 because spurious
correlation effects appear when the distances approach L, since the spins are repli-
cated with their exact orientations at the position » = L + 1. In the CMC method
this does not happen and G;(r) has a correct asymptotic behavior (up to the box
length) as shown in Fig. 5 for a 8 x 8 x 8 lattice at three selected temperatures.

5. Conclusions

We have applied the Cluster Monte Carlo method to the classical Heisenberg model,
and we have shown that the method presents various advantages in comparison with
PBC simulations. We can conclude that:

— The CMC method gives results in accordance with the results?>®7 of previ-

ous simulations and reproduces correctly the characteristics of the second-order
phase transition for the Heisenberg model, and the transition temperature.

— In this method, the orientational pair correlation function has the correct aymp-
totic behavior and does not grow up unphysically for spins whose distances
approach the box length as in PBC simulations.

— The CMC method permits simulations of samples of different shape (we have
used cubical and spherical samples), and gives results independent of the sample
shape.13
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