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Introduction

The most fundamental characteristic of liquid crystals, at least from
a microscopic point of view, is the presence of long=-range orientational
order while positional order is limited or absent altogether [1]. In
this Chapter we shall discuss in some detail the way to describe this
ordering. We shall also introduce distribution functions and other con-
cepts from statistical mechanics which can help us in calculating order
parameters as well as other relevant averages. In the following two
sections we recall some important definitions and concepts from statis-
tical mechanics and, where necessary, provide the generalizations needed
to treat anisotropic fluids. We discuss in particular the singlet and
pair distributions and give equations for the relevant thermodynamic ob-
servables in terms of these distributions. In the third section we
shall introduce order parameters by expanding the singlet distribution in
a complete basis set. The effect of molecular and mesophase symmetry on
the orientational order parameters will be examined. In the final sec-
tion a general expansion of the pair distribution will be given. The
coefficients in this expansion will be interpreted as correlations and
their importance will be discussed.

Distributions

We start by recalling some basic definitions from statistical mechan-
ics and by describing the notation involved. We consider a macroscopic
system of N classical rigid particles with position (e.g. centre of mass)
specified by a vector r and orientation defined by the three Euler
Q. The equilibrium configurational partition function

angles (aBy)
for such a system can be written as [2]

Qg = (1/NDf{ax"exp[-sU (X" 1], (1
ZN/N!
where U({XND is the potential energy of the N particles and, as usual,
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52 C. ZANNONI

the B in the Boltzmann factor is B = (kT)'1 where k is the Boltzmann
constant and T is the absolute temperature. For economy of notation we
have used X to indicate the six variables (r,2) and the curly brackets
to denote collectively N variables. Thus {XN} = (Xl,xz,...,XN) and,
similarly, {dX"'} = dX .dX,....dX.
to drd9, where dr = drxdrydrzand dQ = dasingdgdy. To complete the re-

Each volume element dX is equivalent

marks about notation we mention that in the absence of possible ambig-
uities we shall use only one integration sign to indicate the, possibly
multiple, integration over all the variables whose volume elements
appear. Integration is extended to the sample volume V for positions
and to the usual domains Ogag<2w, Og<psm and Ogys2w for angles [3].

The probability of finding n particles out of the given N in the
range X1+dX1,X2+dX2,..., Xn+an, can be written as the n-particle dis-
tribution

PV (X"} = (NI/(N-m) !z ) {dX) | texp[-8U({X"])], (2)

where, with a slight extension of the previous convention, we have in-
troduced {dX"} = dX _dX eee.dX

m m m+l N
to one but to the number of n-plets that can be formed by choosing n

Notice that P(n) is not normalized

variables out of N i.e.

f1ax™yp (M) ((xP3y= N1/ (N-n) ! . (3)
Here we shall not need to concern ourselves very much with the general
n-particle distribution but mainly with the one- and two-particle dis-~
tributions, or, as they are often called, the singlet and the pair dis-
tributions. These can be used to define the canonical ensemble average
<A> of any property depending on position and orientation of one or two
particles respectively. Thus

AX))> = amfax AX P X)) 4)
and

2
<A(X[,X))> = [I/NQN-D)] jdxldsz(xl,xz)p( dx,,X,). (5)
The singlet distribution P(1) which gives the probability of finding
a molecule at a particular position and orientation is

P (r ,0)) = (/2 )ftdr}dalrexp [-sucir™,a" 1) 1. (6)

Similarly the pair distribution function, giving the probability of
finding simultaneously a particle in a volume drlds'z1 centred at T,,8,

and a second one in a volume drzdsz2 centred at r,,e, is

PP (r ,a.51,,0,) = INN-1)/2]ftdr} daltexp-puir™,e" N1, (7)
Inspection of eqs. (4) and (5) shows that formal alternative definitions
of PJ ang p(2) are [2]
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(n = ! '
p (r.,0,) = N<§(r,-r,)6(a. -0, )> (8)
and 1 1 1 1 1 1

P(z)(r 2,51,,0,) = N(N—1)<6(r1-ri)G(Ql-ﬂi)é(rz—r;)G(QZ—Q;)>. (9)

2 b
Similarly we have in general
t 1]
P(“)(xl,...,xn) = [N/(N-) <8 (XeX ) een (X -X)>, (10)

where §(a-b) is a Dirac delta function and the integration implied in
the ensemble average <:::> is over the primed variables. Egs. (8-10)
can be rewritten in a convenient way using the Fourier integral repres-

entation of the spatial delta function

s(r) = (2" fdk exp(ik.T) (11)
and the representation of the angular delta function
§(2-2') = T[(2L+1)/87 DL (Q)DL* @', (12)
where the functions D (Q) are the ngner rotation matrices[3]; we
define them and give thelr important properties in the Appendix. The

sum in eq. (12) runs over L, m and n; we shall normally take the summa-
tions on the right hand side of an equation to run over all indices not

appearing on the left hand side. Replacing the delta functions in eqé.
(8-10) gives some general expansions for the probability distributions.

As an example

P (r,a;) = Nfdkfe | (K exp(ik.t )DL (a)); (13)
the coefficients
CLnn(K) = [(2L+1)/64n5]<exp(—ik.r')D;jn(n')>, (14)

will be identified later with the order parameters for the system.

It is possible to give a limiting expression for the n-particle dis-
tribution valid for very low densities. In fact, when the distance
between particles is very large and their reciprocal influence neglig-
ible, the probabilities of finding them in their respective volume ele-
ments become statistically independent. Therefore, in the limit that
|ri- rj|->°° for all pairs of particles i and j, the n-particle joint dis-
tribution must yield simply the product of n single particle distribu-
tions

P(“)(xl,xz,...,xn) = [N!/(N-n)!Nn]P(l)(Xl)P(l)(Xz)...P(l)(Xn). (15)

We can use this property to introduce reduced n-particle distributions or.
correlations, which tend to unity as the inter-particle distances tend to
infinity or, in practice, when these distances become many orders of mag-
nitude larger than typical intermolecular distances. Thus we define



™™y = PM X"/ 1 p(l)(x ). (16)
i=1

The most important of this family of g( 1) is the pair correlation func-

tion
(2) = p(2) (1) (1)

For a uniform system the physical properties are invariant under trans-
lation and the interaction energy U({XN}) depends only on relative dis-
tances. Therefore for an ordinary isotropic fluid or for a nematic, but

not for a smectic, we can write

P (ry,0)) = of(a)) (18)
and
P (r a s r ,a) =olfaf@)g P (r,,,0,,2,) (19)
Tpathys Thiy P 1 2’8 120080

where p = N/V is the number density and f(Ql) is a purely orientational
singlet distribution normalized to unity:

£(o)) = (/2 )ftax}rexp[-sU(1X D)1, (20)
with
Idnlf(nl) = 1.
For an isotropic molecular fluid we have simply
Pz ,0,) = p/8n”
and
(2) . = (2)

P (rl’Ql’ rzagz) (0/8 ) g (rlz’ 1’ 2) (21)

If, moreover, the constituent particles are spherical (e.g. atoms) the

pair correlation function g(z)(r 92) depends on inter-particle dis-

s8s
tance alone and g(rlz) is calledlihelradial distribution function.

It is helpful to gain greater physical understanding of the pair dis-
tribution by considering some limiting situations. For very dilute
fluid systems, the density is so low that configurations with three or
more particles interacting simultaneously are extremely rare and can be

neglected. Therefore, in this limit,
g2 (X,X,) = exp[-8U(X,,X))], 0»O0. (22)
In accord with the definition, eq. {17), we have for N>>1
1im g2 (x,x) =1,
T127® (23)
corresponding to no correlation at all. If the particles have a hard

impenetrable core, there is clearly a vanishing probability of finding a

second molecule nearer than a minimum approach distance o from the first
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one. Then
2
gl )(xl,xz) = 0, 1 ,<0(8,,0,). (24)

Another limiting situation where we can sketch the behaviour of g(2) is
that of an ideal solid. Imagine this solid composed of spherical part-
icles exactly positioned at the lattice sites. Every particle will have

z., at a distance r., and so on.

z, nearest neighbours at a distance r,2, 5

1
Therefore

(25)

[}

g(r) = (1/4nr%0) ]z s(r-1,),

(1/4nr20) Lin]z, (47e) “dexpl-(r-1,) 2/4e),

€>0 1
where the second equality follows from simply writing the delta function
as a gaussian of vanishing width. We see that for an idealized solid
g(r) consists of a series of peaks corresponding to the various shells
of neighbours. In a real crystal the positions will not be defined with
absolute certainty due to the possibility of thermal oscillations etc.
and the peaks will obviously be smeared out; e.g. they could be more or
less sharp gaussians instead of delta functions. In a 1iquid the peaks
will be even more diffuse and we could have something like the behaviour
sketched in figure 1. The successive peaks in g(r) can still be associatec

Fig. 1 The possible behaviour of the radial distribution function in a liquid; o is
the distance of closest approach for two particles.

with the presence of average shells of neighbours and give an indication
of short-range order (structure) in a fluid. Notice the fundamental
difference between g(r) in a fluid and in the idealized solid. In the
fluid g(r) decays to one in the absence of correlations while in the
solid g(r) keeps oscillating even when the separation r is extremely
large. In other words in a solid we have long-range positional order,
which vanishes at the melting transition.
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Thermodynamic Properties

The configurational partition function and the distributions intro-
duced in the previous section provide a convenient link between micro-
scopic or molecular properties and thermodynamic observables. In gen-
eral we have for the configurational contributions to the Helmholtz free
energy A, entropy S, pressure P and internal energy U the expressions
(2,41,

A = -XT 1n Q, (26)
§ = -(3A/3T)y, (27)
P = -(3A/3V), (28)
U=A+TS,

=12 (3 (A/T)/3T)

= kT?(3(1nQy) /aT) * (29)

Other important observables are the specific heat at constant volume CV
and the isothermal compressibility Ko

Cy = (3U/3T)y= T(3S/8T)
= -T(2%A/8T)y, (30)
cp = ~(1/V) (3V/aP) . (31)

Since CV is positive eq. (30) implies that the free energy at constant
volume is a downward concave function of temperature.

We recall also the Ehrenfest scheme of classifying phase transitions
[4,5], which, although not of general applicability, sometimes gives a
useful practical framework. According to the scheme a transition is
classified as being of nth order if the first (n-1) derivatives of the
free energy are continuous across the phase transition while the nth
shows a discontinuity. Thus in a first order transition, e.g. melting
or condensation away from the critical point, there is a finite jump in
the first derivative of the free energy, the entropy, and a latent heat
TaS. In a higher order transition, however, the entropy change is con-
tinuous across the transition. This idealized behaviour is sketched in
figure 2. The nematic-isotropic phase transition is a first order transi-
tion with a small latent heat. For this reason it is often called a
weak first order phase transition. The prediction and the location of
this phase transition is central to any statistical theory of liquid
crystals. A cautionary remark is thus perhaps not inappropriate here.
If we look back at eq. (1), we see that the partition function QN is a
continuous and infinitely differentiable function of inverse temperature
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Fig. 2 A sketch of the behaviour of the free energy, A, and of its temperature deriv-
atives at a first order and second order phase tramsition, according to the Ehrenfest
scheme.

for any finite N. This implies that the free energy and its derivatives
are also continuous and differentiable. Strictly, therefore, we cannot
have a true phase transition for a system of finite size [2a]. We have
to go to the so-called thermodynamic limit, that is calculate the free
energy per particle and take the limit

a(p,T) = lim A(V,T)/N ,p = 1im N/V = constant.

N-oo Norowo
- Voo Voo

This limiting free energy can have the discontinuities which correspond
to phase transitions. Another important reason for going to the thermo-
dynamic limit, by letting N tend to infinity, while keeping the density
N/V constant, is that only in this limit do the various ensembles used
in statistical thermodynamics become exactly equivalent [2].
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Let us now write down explicit expressions for energy, pressure and
specific heat as ensemble averages using the distributions we have def-
ined previously.

Energy

Assume that the total potential energy can be decomposed as a sum of
pairwise interactions;

Uy = T U0yLx)- (32)
lgi<jgN

Then the total average potential energy is

<> = <UCXMH)> = 3fax aX,Ux,, X)) P B (X, ,X),

= ;pzfdxldXZU(xl,xz)G(xl,xz) , (33)

for uniform fluids U(Xl,xz) = U(r 91,92) and we find

12

<Us = JVplfdr, da. de U(r..,8.,8.)£(0.)E(2,)e20(r, .0, ,2,),
12 1 2 12 1 2 1 2 12 1 2

= 3Ve fdr ,de, do,U(r,,,8,,2,)6(r ,,0,,8,)- (34)
Thus we see that for an anisotropic fluid the key quantity to be calcul-
ated is P(z)(rlz,nl,ﬂz) = pzc(rlz,ﬂl,ﬂz) and not g(z) as in an ordinary
isotropic fluid. The reason is, of course, that in an anisotropic

fluid the orientational distribution f(g) is not a constant so that g(z)
does not have a simple normalization. We have therefore introduced for
convenience the reduced distribution G, which is normalized according to
. _ _y-1
far,,da; da,G(r;,,2,,2,) = V(1-N"") (35)
and has simple properties,
G(r),50,,8,) = £(a)£(R,), 1), (36)
and
G(ry,,0,,92,) = £(2,)f(a,)exp{-8U(r;,,0;,92,)}, 0~0. (37
Pressure

An equation linking the pressure to the other thermodynamic variables,
the so-called equation of state, can also be given an ensemble average
representation by combining eqs. (26) and (28). The volume dependence
of the configurational integral QN can be made explicit by transforming to
dimensionless coordinates: s; = ri/Vl/S. We then find the virial equa~
tion

P = okT -(1/3V)]r,.aU({X"})/or_>. (38)

For a pair additive potential eq. (38) can be reduced to
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= _ (2)
P = pkT-(1/6) faX; dX,P'“7 (X ,X,)r,,.3U(X ,X,} /37, (39)
This can be simplified further, for a uniform fluid, to
_ _r 2
P = pkT-(p /6)jdrlzdszldszzG(rlz,szl,szz)rlz.aU(rlz,nl,Qz)/arlz, (40)
which reduces, for isotropic fluids, to
2
P - okT-(p2/384n%)fdr ,da,de,g® (r ,,0,,2,))
X rlz.aU(rlz,Ql,Qz)/arlz. (41)

For spherically symmetric particles and isotropic intermolecular inter-

actions we recover the familiar expression
- _ 2 3
P = pkT-(2wp /S)Idrlzg(rlz)rlzaU(rlz)/arlz. (42)

Eqs. (38-42) hold, of course, for any potential that is a continuous
differentiable function of positions. However, their validity can be
shown to extend also to the important hard-core potentials. Consider,
as a simple example, the hard-sphere potential

0 when r > 0

U(rlz) = 12
® when Ty, <o
Eq. (42) can be rewritten as [Z2b]

P/KT =p + (2mp°/3)[" dr r’y(r)dH(r-0)/dr, (43)
where y(r) = g(r)exp{rU(r)} is assumed to be an everywhere continuous
function of r and H(r-o) = exp{-gU(r)}. Integration can now be easily
performed noticing that H(r-o) is a unit step function. The derivative

of a unit step function is a delta function so we have at once

P/KT = p + (210%6°/3)y (o), (44)

where y(o) is 1lim g(o+e).
g0t

This equation is particularly important in computer simulations, where
the pair distribution at the contact point y(o) can be calculated numer-
ically [6,7]. Eq. (38) can be generalized to systems composed of hard

anisotropic particles [7]}, at least in principle.

Specific Heat
Some manipulation of eq. (30) shows that the specific heat can be

written as
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C, = (<U%>-<us?)/xT?, (45)
2
= 1lp deldXZU(xl,xz)aG(xl,xz)/aT, (46)
for temperature independent intermolecular potentials. Eq. (45) shows

that Cv is a positive quantity determined essentially by the fluctuations
in the internal energy.

Compressibility
Consider a macroscopic subvolume VA of the total volume V and the mean

square fluctuation in the number of particles NA occupying it. Clearly

N> =f ax. P (x) (47)
and A VA 1 1
. (2)
<N, (N,-1)> -5 ax dx,p (3 (X ,X,). (48)
A
Therefore
NB-aNy > P = <NA>+£A ax ax, (PP ,x)-p(P x )P (x,)7 (49)

2
and, remembering [2] that kp can also be written as Ko = (V/kT)<AN2>/<N> s

cp = (U/KDI((1/p) + (1/p2V,) f5 ax ax, (P (x ,x,)-P xppt (xp03.
A

A (50)
For a uniform fluid this reduces to
kp = (L/KT){(1/p) + fdrde da,[G(r,a,,2,)-f(2,)f(a,)]} (51)

Va

and for an isotropic fluid to the equation given by Steele [8],

cp = (L/KT){(1/0) + (1/6472) | drdnldnz[gtz)(r,nl,nz)—l]}.(SZ)

Near a phase transition, where the compressibility diverges it foll-
ows from eqs. (50-52) that the area under the correlation G must also
diverge. In other words, the range of the correlations, the correlation
length, has to diverge.

Order Parameters

When studying phase transformations it is often useful to define an
order parameter, that is a quantity which changes value on going from one
phase to the other and can therefore be used to monitor the transition.
In many instances there is a simple practical choice for this order para-
meter, such as the magnetization in a magnetic system [5], or the aniso-
tropy in some tensor property for a nematic-isotropic transition [1,9].
From a molecular point of view, however, we should describe the passage
from one phase to another in terms of the modifications that this pro-
duces in the distribution functions. It is natural, therefore, to in-
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troduce in a general way order parameters as expansion coefficients of,
say, the singlet distribution in a suitable basis set. Thus, if the
distribution depends on positions and orientations, we will have posi-~
tional, orientational and mixed positional-orientational order para-
meters [1b]. These parameters will, of course, alter with the variable
producing the phase change, and, if properly chosen, will vanish when the
transition to the more symmetric phase takes place. The most charac-
teristic and, perhaps, the most important order parameters for iiquid
crystal phases are the orientational ones. These define the distribu-
tion function f(Q),

£(o) = (1/N)fdrp ) (r,q), (53)

which, of course, for a translationally invariant fluid such as a nema-
tic, reduces to

£(a) = P a)/p.

The ensemble average of any single-particle orientational function A(Q)

can be written in terms of f(@) as
A = [daf()A(R). (54)

We use an upper bar instead of the usual angular brackets to indicate
this purely orientational average. Any well behaved function of the
three Euler angles f£(9) can be expanded in a Wigner series [3], that is
in a basis of Wigner rotation matrices;

£(2) = Jf, DF

m,n

(2). (55)

. ¥
Multiplying both sides of eq. (55) by D;n and integrating over the angles
we find
L™

£, = [(2L+1>/8w2]Dm,n, (56)

because of the orthogonality of the Wigner rotation matrices and ‘the def-
inition in eq. (54). The averages Bi’n, which completely define f(g),
are just the orientational order parameters. We give the explicit ex-
pressions for the rotation matrices of rank L = 0,1,2,4 in the Appendix.
There can be up to (2L+l)2 order parameters of rank L although this num-
ber can be drastically reduced by exploiting the symmetry properties of
the mesophase and of its constituent particles. For example in a uni-
axial phase the singlet distribution must be invariant under rotation
about the director i.e. the axis of symmetry. If this is chosen to be
z, it follows that m must be zero in the average D; L+ In addition if

b

a uniaxial mesophase has a symmetry plane perpendicular to the director
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(th symmetry) then only terms with even L can appear in eq. (55). To
simplify further one has to investigate the symmetry of the molecules
forming the mesophase. Let us consider the simplest case of all, which
arises when the molecules are cylindrically symmetric. In this 1limit
rotation about the molecular symmetry axis should not modify the dis-
tribution f£(g), which implies n = O in eq. (55). In other words for a
cylindrically symmetric mesophase composed of cylindrically symmetric
particles the singlet orientational distribution has to depend only on
the angle B between the director and the molecular symmetry axis. Acc-
ordingly we have f(B) = f(Q)/4ﬂ2, where

_ L
f£(g) = ZfLDO,O(B)’ L even, (57)
and
fdBsing £(B) = 1.

In this important but, strictly, unrealistic case the expansion co-
efficients are fL = [(2L+1)/2] PL and the order parameters are just av-
erages of the even Legendre polynomials. Obviously a knowledge of £f()
implies that all the order parameters can be calculated. Vice versa a
knowledge of ?2, F4 etc. gives us progressively more information on the
singlet distribution function and allows a test of the various theor-
etical models put forward for nematics or other liquid crystals.

We cannot say very much about the rate of convergence of expansion
(57). However, since the number of zeros in the Legendre polynomials
increases with their rank we expect the ?L to decrease if the distribu-
tion f(Q) is peaked at 8=0 and monotonically non-increasing. If this
is the case we expect the expansion coefficients fL to decrease with L
at low order. As the order increases, the convergence will get worse
as all the PL tend to their limit PL = 1 (L even) for complete order.

We do not expect convergence to be very rapid in the region of inter-
mediate order: Pz“ 0.4 = 0.6. Thus, unless we have a technique able to
yield directly £(8) [10] or, in general, f(Q) the determination of order
parameters of rank as high as possible is a problem of great importance.
We do not want to discuss the problems connected with the practical
measurement of the order parameters here, since these are treated in

detail in other Chapters. However, we think it worthwhile to examine
b

bl

briefly how the order parameters can be related to measureable
quantities.

Let us consider, as an example, the determination of a second rank
tensor property during a time sufficiently long to allow observation of
statically averaged quantities. 1f F(l™ are the irreducible spherical

components of the tensor F, as defined in the Appendix and if F is symm-
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etric, then its only non-zero components will be those of rank L=0 and
L=2. Let us consider the anisotropic, L=2, component. The tensor F is
measured in a laboratory frame and its components can be related to the

molecule fixed components pr(2,m) by
(2,n)_ 2* (2,m)
F I D, (2)F :

Taking an ensemble average we have, for a uniaxial mesophase,

F(m (2,00

_vn2* §,(2,m)
_XDO F ’ (58)

where we have taken the laboratory z axis to be parallel to the director.

2 .p2

If the molecule has cylindrical symmetry, in the sense that D R
O,m “0,0 mO

then we have

.3
P,z 0,0
= p(2:0) /g (2,0) (59)

Thus, the orientational order parameter ?2 can be obtained in practice

=]

from the measured anisotropy in F.

A similar analysis can obviously be given for a tensor of higher rank.
However, while it is relatively easy to determine 52 from the anisotropy
of some second rank tensor F (e.g. the dipolar coupling between two
nuclei) it is much more difficult to find a tensor quantity of higher
rank which can be measured directly. One 1is then forced to resort to
somewhat indirect methods. For example the fourth rank order parameter
P4 can be extracted from measurements of the mean square value of a sec-
ond rank quantity [11,12]. In the 1limit of cylindrical symmetry, we
have, in fact,

(FC2:0092 = (1/5)+(2/1)B, + (18/35),3(F' (2:00)7, (60)

In the Raman scattering technique described by Pershan [11], in Chapter 17
the molecular quantity F' is the differential polarizability tensor for
a certain localized Raman mode.

Information about all the parameters is contained, in principle, in
coh
s

tion for neutrons scattered by a monodomain nematic [13,14]. In fact,

the single molecule coherent contribution (do/dq) tc the cross sec-

assuming that the nematogenic molecules are rigid, we have

(do/dQ)EOh ='Z. aiajexpilQ.f;;T, (61)
1,]

where Q is the scattering vector, rij the vector joining nuclei 1 and j,
which have bound coherent scattering lengths a; and aj respectively.
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Rayleigh expansion of the exponential gives

SPQT; ) = 1D L+ Qr; ) Dg 4(Qry5), (62)
where we use the notation D;’H(B-A) to indicate a rotation from A to B;
e.g. here, from rij to Q. jL(Qrij) is a spherical Bessel function of
rank L. Using the properties of the Wigner rotation matrices we can

write

Dy o(Q-15;) = IDF o(x;;-L)DL o (Q-L),

- ZD;’H(M-L)DI‘;’O(rij-M)Dr’;‘jo(Q-L) , (63)
where D;’H(M—L) indicates a rotation from a laboratory to a molecule
fixed frame. For a uniaxial mesophase and cylindrically symmetric mole-
cules we have BE’H = ?L $20 Sno if the laboratory z axis is along the
director and the molecular z axis is parallel to the axis of cylindrical
symmetry . Substitution in eq. (62) gives eventually the desired ex-

pression for the cross section in terms of the order parameters
coh _ -\ L . L _ L _M1D
(do/d) (°" = [taza, ()" (2L+1)3 (Qr;)Dg 4 (Q-LIDg o(r; -MIP . (64)

Molecular Symmetry and Mesophase Symmetry

As we have seen in the previous section the general expansion of the
singlet orientational distribution f(2) can be simplified when the meso-
phase and its constituent molecules are both cylindrically symmetric.

In general, however, the exploitation of the symmetry of the molecule and
the phase is not quite so intuitive. Thus we wish to introduce a formal
procedure for determining the independent order parameters. Admittedly,
we have not yet defined what we mean by the symmetry of a phase. This
problem was recently discussed by Goshen et al. [15]. They noticed that
Landau's original suggestion [2c] of defining the symmetry of a fluid as
that of the singlet distribution P(l)(r) and that of nematics by the
symmetry of P(Z)(rl,rz) is inadequate,but they did not propose an altern-
ative definition. However, following our approach it seems clear that
Landau's definition only needs generalization to the case of anisotropic
particles. We shall therefore define the symmetry group of a phase as
the group of transformations of the laboratory system that leave the sing-
let distribution P(l)(r,ﬂ) as well as the higher ones invariant. Simil-
arly, we can define an effective symmetry for the molecule in terms of

the group of molecular transformations leaving the singlet distribution
unchanged. ~

The same considerations hold, of course, for the purely orientational
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distribution f(@) which is of primary concern to us. In group theoret-
ical language [16] we would say that f(@) belongs to the totally symmet-
tric representation of the group of the molecule and of the mesophase.
Therefore one way of applying symmetry is to project the distribution
onto the totally symmetric representation of these groups [8,16-18]. We
shall actually use this method in a later section to simplify the pair
distribution. Another way, strictly related to the previous one, which
we find convenient for the simplification of order parameters depends on
their definition;

D;,n =J'dszf(n)D;’n(Q). (65)
Now a symmetry transformation O does not alter fde and also leaves f(Q)
invariant. It then follows that the action of 0 on the order parameters
depends solely on its effect on the Wigner rotation matrices. Since
these are just a representation of the rotation D(aBy) in an angular mom-

entum basis |Lm>;

<Lm|D(aBy)|Ln>,

n

L
Doy, n(eBY)
it follows that to investigate the effect of a molecular symmetry opera-
tion Oy we need to determine the matrix elements
<Lmljo, p(2)|Ln>.
Similarly, the application of a laboratory transformation such as a
symmetry operation of the mesophase 0L yields

<Lm|0,D(a) [Ln>.

Every symmetry operation for the molecule or for the phase gives a rela-
tion that the order parameters have to satisfy, that is

L
Dy o = <LmW]Ln>, (66)
for the molecule and
L
Dpn = <Lm[0, D (@) [Ln>, (67)

for the phase. Any point operation can be written as a certain combin-
ation of rotations and inversion. Let us consider therefore each of

these at a time. Thus suppose that the symmetry operation of the meso-
phase 0  is a rotation; then it will transform the original laboratory

L
frame L into another frame L' and give

<Lm[0LD(M—L)|Ln> <Lm|D(L-L")D(M-L) |Ln>,

IDy L (L-L')DC  (M-L), (68)
q
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where for greater clarity we have written the rotation from the labora-
tory to the molecular frame as D(M-L) instead of D(Q). Quite analogously,
if the molecule has a rotation 0, amongst its symmetry operations, we
find

<Lm]OMD(M—L)|Ln> = <Lm|D(M-L)D(M'-M) |Ln>,

= ZD;’q(M—L)D;’n(M‘—M). (69)
q

Notice that successive rotations D are applied in reverse order, that is
from left to right (cf. the Appendix, eq. A8). If a symmetry operation

0 contains the inversion operation, I, it is clear that to investigate
its effect we also need the matrix elements <Lm|I|Ln>. These are obtain-
(—)L|Lm>. Therefore [17]

ed by remembering [16a] that I|Lm>

<Lm|I|Ln> = (-)%s . (70)

n

The inversion and rotation operations commute:

<Lm|ID|Ln>

L<lm|I[Lg><Lq[D[Ln>,
q

L.L
(') Dm’n’

<Lm|DI|Ln>.

Therefore, for our purposes, the inversion has the same effect in either
a laboratory or a molecular frame.

Let us illustrate the previous arguments with a simple example. Sup-
pose that the mesophase has a plane of symmetry perpendicular to the z
axis, that is 0, = o, = o(xy). Since we can write [16] o(xy) = ID(n00)

L h
we find

<Lm|o(xy) D|Ln> =y<Lm|I|Lq><Lq|D(#00) [Lp><Lp|D|Ln>,

L . L
(=) quexp(-1qn)5qup’n,

_ (_yL+mnL
= (377D, e

A symmetry plane o(xy) in the molecule would give instead

<Lmo(xy),D|Ln> = (—JL+nD;’n.

Proceeding in a similar way we obtain the results reported in Table 1 for
the effect of various molecular symmetry operations on the Wigner func-
tions. The effect of mesophase symmetries can also be easily obtained
from Table 1 remembering that the order of operations is.changed so that
for example, the first subscript, m, in D; n is changed instead of n.

s
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Table 1 Effect of various molecular symmetry operations Oy on the Wigner rotation
matrices. The notation for the symmetry operators [16e] is as follows. I stands for
the inversion; oflxy) for a symmetry plane perpendicular to z; oy for a plane making
an angle ¢ with (az). A rotation of 2n/k about z.is written as (1 (z) and a continuous
rotation of v about z as C,(z). A rotation of n about an axis perpendicular to z and
making an angle ¢ with x is indicated by Cs(¢). Sy, stands for a k-fold rotoreflection
axis.

Operator Oy <Lm|0MD]Ln>
o (xy) "oy
o(xz) COR
a(yz) D;, n
%, (-)nexp(-ian>)DII]‘],_n
c,(2) ()"0
c (2) exp(—inZn’/k)DII;l,n
¢, (2) exp(-iny)DII;l’n
C,y(0) Ol
€, (x) (=) ¥ Pexp (-in21/k) D;,-n
¢, (0 () Mexp(-inn)Dy
C, ) Ohati
Cy() éDrI;,ng,n(B)
C,($) () exp(-izne)Dy |
S, () Pexp(-in2n/Dr

Having studied the effect of symmetry transformations on the Wigner
rotation matrices it remains to substitute eqs.(66) and (67) to obtain the
corresponding symmetries of the order parameters. Thus, in the example

we have just seen, a o(xy) plane in the laboratory gives

DL _ (_)L+mDL ,
m,n m,n

while a o(Xy) operation in the molecule yields
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D;,n = (-)L+DD;,n'
In general an additional symmetry for the order parameters follows immed-
iately from the reality of f(@) and the relation D;fn = (l)m'nDI_“m’_n for
the Wigner functions. Thus

L* (_)m-nDL“

D = .
m,n -m,-n

(71)
The symmetry relations just determined allow us to find the relevant
order parameters for molecules and phases of various symmetry. As an
example we give in Table 2 the surviving order parameters of second and
fourth rank for a uniaxial phase and various molecular symmetries. Fin-
ally, it is perhaps worth mentioning that the relations we have found only
tell us about the order parameters that can be different from zero. Thus
they indicate which order parameters we can try to measure but, of course,
do not say anything about their magnitudes. Indeed it may well turn out
that molecules of low symmetry exhibit order parameters consistent, with-
in experimental error, with some higher symmetry.

Ordering Matrix

An alternative definition for order parameters in uniaxial phases can
be obtained by expanding the singlet orientational distribution f(@) in
terms of the direction cosines L, (e = X,yY,z) of the director with respect
to a molecule fixed frame [19]. Thus

2
f£(R) = (1/87°) {145 7 S .2 2, + 9y S LR % Rt ),
o8 aB a”B 5,8,7,6 aBys “a"BTy"S (72)
where
Seg = (3 2,78, ,)/2 (73)

is called the Saupe ordering matrix and

SGBY5 = [352alaiyl6 =5( QRBGY6+£G£Y656+ 02568Y+ BEYSGS
/8.

* Slésay+zyldsa§ +(6a8676+6a7666+6u6667)]

In general, expansions in Wigner matrices are more convenient for

(74)

theoretical manipulations in view of their simple transformation proper-
ties. However the ordering matrix is used almost universally, as for

example in nuclear magnetic resonance, so we give in Table 3 the rela-

tion between S . and Dg .+ Notice that from eq. (73) it follows at once
H
that the second rank S matrix is traceless
JsS =0
oo
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Table 2. Independent orientational order parameters of second and fourth rank for uni-
axtial phases and molecules of various symmetry. n, and ny, indicate the number of in—
dependent real quantities to be determined. Schonflies notation is used for the
point group symbols.

Molecular point group np Eg,n ny Dg,n

C1oCy > %,W—Dg,l’—'%,z 9 %,o’%,l’%,z’;g,s’%A
Cg»C22Con 5 %,o’%,z > Eg,o’g,z’gg,4
Cov>P2:Pon 2 %,0’%,2%2‘2 5 %,0,%’;0—3—’:2 ’Bg,f%tél
C50Sg 10, S

C4:Can>54 1 %,o 3 53,0’%,4

C3v2P3:D3g 1 %,o 2 %,o’%,s;)—gts
Cav2D24°PaneDy 1 %,o 2 %,0’%,453’:4
C5CopsCay 1 53,0 1 %,o

Dyg+Ps5:Psp:Psqg 1 %,o 1 _[;g,o

Can2C62Con Cov ! %,o 1 D—g,o

D3 Pg2Dgp 2 Peq 1 E).(2;,0 1 Eg,o

Ca2Cony s Gy Do ! Eg,o ! _Dg,o

T,T,,T,,0,0 0 1 ot

o T2 Tg-050y 0,0

Y,Y, KK 0 0

h’7h



Matita

Matita


70 C. ZANNONI

Table 3 The relation between Saupe's ordering matrix elements 5.8 and the order para-

2
parameters DO,n

2
Szz - D0,0
1 1 5 -
_ 3 2 - 5 2 2
XX S)’}' (6)° Re DO,Z (3/2) (DO,Z + DO,-Z)
3 - L -
. 2 2 I 3 2 _ pl
Sxy (3/2)%Im 0,2 i (3/8) (DO,—Z DO,Z)
1 ) hl -y -y
- 2 2 _ 2 2 _ 2
sz =-(3/2)2? Re DO,l = (3/8) (DO,-I DO,l)
1 ) 1 " -y
- 3 2 o 3 2 2
Syz (3/2)% Im 0,1 i (3/8) (DO,l + DO,—I)

Smectics

In a system with some translational order the distribution functions
depend on position as well as orientation. We consider here the sing-
let distribution P(l)(r,n) for such systems and introduce order para-
meters for smectic phases. We shall assume, for simplicity, that the
system is contained in a large cubic box of edge A. Then the functions
by = A’S/z exp(ik.r), where the lattice vector k has components ka= o,

t 2n/x, £ 4n/Xx,...,#n2%/Xx, o = X,y,z, constitute a suitable orthonormal

set and we can write

P (r,0) = [P, (Wexp(ik.r)D: | (2), (75)
with
P (K) = {(2L+1)/8n2V}£drdQ P(l)(r,n)exp(-ik.r)D;fn(a), (76)

because of the orthogonality condition
(1/2%) fdr exp(ik.nexp(-ik'.r) = &(k-k'). (77)
\

Eq. (75) is a very general expression which holds in principle for crys-
tals, smectics and nematics as special cases. Thus for a monoatomic
lattice, L =m = n = 0, we have the Fourier expansion [2c]

P (r,0) = [Py, (K)exp(ik.1), (78)

where k is a vector in reciprocal space and the spatial integrations in

eq. (76) can be limited to the repeat unit. For a uniform nematic or an
isotropic liquid eq. (75) becomes

p(Mr,0) = Jp, __(0)D}

m,n

(2). (79)
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Here the container size is assumed to be large, in the sense that i»=,
so that finite size effects are negligible and we can only have k=0.
For a smectic phase with positional order in one dimension only (e.g.

a smectic A or C phase) we can restrict the series (75) to

Pz, 0) QZ:PLmn(k)exp(ikz)D;,n(Q), (80)

where k = kz and z is parallel to the layer normal. The expansion can
be simplified by using the symmetry of the molecule and the mesophase.
For example in a smectic A, with uniaxial symmetry about z,

p(1) ;. 0y = ZPLOn(k)exp(ikz)ngn(Q). (81)

Now suppose that the phase also has a symmetry plane o(xy), perpendicular
to the z direction; then

= (3L -
LK) = ()PP (-K).
Consequently, for k=0, this implies that L has to be even. If L is even

because of molecular symmetry then PLOn[k) = PLOn(-k) and eq. (81) can be
reduced to

1 < L
p )(Z,Q) = Z ) (2- -8y LOn(ZTrM/d)Cos(Zan/d)Do’n(Q), (82)
where d is the average interlayer spacing and the notation |k| = (27M/d)
has been introduced. 0f course, for cylindrically symmetric (Dmh) mole-

cules, this reduces to the expression given by Wojtowicz [1b],

P(z,cosg) = ) PL_MCOS(Zan/d)PL(CosB), L even, (83)
M=0 ~°
L=0O
which we normalize so that
d T
[ dzf dgsinBP(z,cosg) = N. (84)
0 0
Then
PL'M = (2L+1)<cos(ZwMz/d)PL(cosB)>/2d, (85)
Po;O = N/-/d, (86)
Po.y = <cos(2tMz/d)>/2d, (87)
PL;O = [2L+1)<PL>/2d, (88)
where d .
<A> = [ dBf dgsingP(z,cosg)A (2, 5p)/N (89)
0 0
and the coefficients PL-M represent the order parameters for the system.

In particular the terms P and PL-O give the positional and orienta-
t

o;M
tional order respectively.
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Orientational Order Parameters for More Complex Phases

A group theoretical classification of all the possible ordered phases
has been given by Goshen et al. [15]. Here, however, we do not want to
give all the possible order parameters for every phase; instead we be-
gin by making some general remarks, and then say something about the
smectic C phase. Firstly we point out that phases possessing transla-
tional order should be given a space group like classification [15].
Thus the symmetrization of the distribution functions and of the order
parameters should be done by applying all the operations of the relevant
space group. This can be rather involved. Notice, however, that the
purely orientational order parameters, which define the distribution
f(Q), (cf. eq. 53) can be classified simply according to the point group
for the system. This is, of course, because the purely orientational
order parameters are invariant under translation; they correspond to
k=0 in expansion (75). Thus to find out the orientational parameters
for a phase of a given crystallographic point group we can use exactly
the same arguments as before. Consider an ideal smectic C for example.
This phase is a tilted version of the smectic A phase, where the direc-
tor or major optic axis make an angle 6, known as the tilt angle, with
the layer normal. The point group of this model is then CZh’ with Z
parallel to the layer and Y parallel to the layer normal; here we use
X,Y,Z for the laboratory frame. According to Table 1 the symmetry op-
erations of CZh give

L _ ,_ympL  _ _yLem L
Dy L= (™D = ()Mo (90)
thus L and m have to be even. For second rank the possible order para-

meters should then be

— el
DO,ﬂ ’ Dz’n = ( )
Notice that, even if the particles constituting the phase have cylin-

nn2*
-2,n’ (o1)
drical symmetry, we still have two independent order parameters, corres-
ponding to the biaxiality of the phase. This is perhaps more transpar-
ent in cartesian coordinates. Let us define an ordering matrix Q

Qg = (32,2,-8 )72 (92)
formally identical to the Saupe ordering matrix. However, here it is
the phase that is not cylindrically symmetric instead of the particles,
and so we take L, to be the direction cosines for a molecule in the lab-

oratory frame. Now, from the assumed symmetry of the smectic C it is
clear that
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Ux Wy ©
Q = [ Qqy Qy O (93)
0 0 Q,,

This can be diagonalized by a rotation of & about Z, provided tan2e =
2Qyy/ (Qyx-Qyy) . The angle 6 is just the tilt angle, which represents the
orientation of the director in the (XY) plane. The diagonalized form of

Q is

-3Q,, * & 0 0
Q = 0 -%QZZ - & 0
0 0] QZZ ,
1
where £ =%{(QXX-QYY)2 + 4Q)2(Y}2 is a biaxiality parameter.

Pair Distribution

In the previous section we have seen how symmetry can be used to limit
the number of order parameters and hence the possible form of the singlet
distribution function. Similar arguments can be applied to the pair dis-
tribution G(Xl,Xz) or, rather, G(rlz,ﬂ
attention to translationally invariant liquid crystals and so ignore the

1,92) since we shall confine our

smectic phases. We use the methods developed by Steele [8], Jepsen and
Friedman[18] and Blum and Torruella [17] for ordinary fluids. Let us
start by noticing that G(rlz,nl,ﬂz) when written in a laboratory frame
has to depend on the intermolecular separation r as well as the orien-

12
tations 2,9, of molecules 1 and 2, together with the orientation of the

intermolecular vector 2.+ Therefore we can write down immediately
m,m,m;n,n L L
_ 172727172 1 2 L
G(rlz’nl’QZJ - ZGLlLZL (rlz)Dml,nl(Ql)sz,nz(Qz)Dm,o(ﬂr)’ (94)

where this distribution should be invariant under the symmetry operations
of the molecules and of the phase. Moreover permutation of identical
molecules should leave G unaltered. We can therefore symmetry adapt G
so that it transforms according to the totally symmetric representation
of the group of transformations just mentioned. Projection onto the
totally symmetric representation of a group can be achieved [8,16] by

application of a projection operator P
n

P = (1/n,) zios , (95)
s:

for a group of n transformations 0. For a continuous group eq. (95)
becomes

P = (1/[ds)[dso_ (96)
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with an obvious change of notation.

It is clear that application of P to eq. (94) again requires invest-
igating the effect of the operations 0, on the Wigner functions. Since
we have already examined the effect of rotations and reflections the only
new effect we have to study is that of permuting 1 and 2. This is
rather easy, since, apart from exchanging subscripts, the permutation
transforms T, in Ty, = Ty, and then D;’o(r—L) into (—)LDi’o(r—L). Thus,
for identical molecules, we obtain the condition

m,mm,n.n m,m.m;n,.n
172™ Mg _ o LaM2mme
O O I O R Ok (97)

G

Consider a rotationally invariant fluid, such as a nematic above its
clearing point or an unoriented nematic. In this case the phase symm-
etry is that of the full rotation group and the projector P is simply
(1/8x%) fdaD(2). Application of P gives

m.m,m;n,n, L L
17272717°2,71 2 L
G(r Q,,9 = )G D Q.)D Q.,)D Q
( 122712 2) E L1L2L qlnl( 1) qz,nz( 2) q,o( r)
L L
xfded_ ' D 2 Dk /8q?. (98)

Mpsq; Mye9p Ms4

Use of the result for the integral of three rotation matrices [20] (cf.
eq. A6) yields the most general form for the rotationally invariant dis-
tribution G as

q,q,;n,n L L
17227172 1 2 L
G(r,,,2,,92,) = )G (r.,)D (2,)D (2.,)D ®.), (99)
12271772 LL,L 12°7q,,n; 2717 q,,n, 0277 -q = q,,0 T
where
q9;9,;-nn m-q,-q
112270172 _ 172 . .
L L,L (ryp) = 1) /(2L+1)}C(L1L2L’m1m2)C(LleL’qlqz)6m1+m2,-m
m,m,m;n.n
17272712
x GLleL (ry,) (100)

and C(abc;de) are Clebsch-Gordan coefficients [3]. Notice that the re-
quirement of rotational invariance has severely limited the form of eq.
(94); in fact the Clebsch-Gordan coefficients cause the ranks L1’L2’L
to satisfy the triangular condition; [Ll—LzlsLsLl+L2.

Let us now make the further assumption that the intermolecular vector

is spherically distributed so that rotating T, does not change G. A
projection similar to the previous one gives § 1) in eq. (99).
L _q L»O qls'qz

. o = ¢y 1 -3 .
Since C(LILZO,q q) () (2L1+1) 6L1L2’ we find
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G(ry 01500 = [I6[1"2 00y ,)Dg o (0)00 o (2,) (2L+1)/64n",  (101)

n
Where n.n m m,-m.o:n,n
172 _ 1.1 MMM 2 2
GL (rlz) = J(-) G Lo (8n°/2L+1) (102)
and we have removed unnecessary subscripts. Eq. (101) can be written in

a more transparent form by using the property
n,-q
1 DL

LI

L L*
D () =D (-2,), = (=)
qsnl 1 nl)q l

and the closure of the Wigner functions eq. (A8). Thus we find

R

- "o 64:41G pL
G(ry,,9,,8,) = [(-) "{(2L+1)/64x71G,~ “(r,,)

—nl,n

(81505 (103)

where 8, is the angle of rotation from molecule 1 to molecule 2. This
shows that for a rotationally invariant fluid the reduced pair distribu-

tion G(r ,Qz), which does not depend on the orientation of the inter-

Q2
1271
molecular vector must be a function of relative orientations only. The

same conclusion obviously applies to G(r ,92) for any fluid where the

Q
12°71
distribution of intermolecular vectors is spherically symmetric. For

=n_=0

such a situation, if the molecules are cylindrically symmetric, n,=n,

and
- - 4., .00 L
G(ry,»2,,2,) = G(ry,,8,,), = L{(2L+1)/64n 36" (1 ))Dg (2,,). (104)

This simple equation has some important features. First of all because
it is fully rotationally invariant it can be used to describe the onset
of orientational order at an isotropic-nematic transition in the absence
of external fields. Remember in fact that when we have introduced
order parameters from the singlet distribution we have, more or less,
assumed implicitly the existence of an aligned mesophase with a uniform
director. This, in turn, implies the existence of an external field to
break the full rotational symmetry of the mesophase above the isotropic
transition. While this is perfectly legitimate it would be more satis-
factory to be able to discuss how long-range ordering is set up in a
system for which the nematic phase had been formed in the absence of a
field. It is physically intuitive that to do this we have to resort to
the pair distribution since this can tell us about the extent of orien-
tational correlations without having to resort to a laboratory principal
axis system.

Let us interpret the coefficients Ggo(rlz) in expansion (104). From

the definition of G(r 912) and the orthogonality of the Legendre poly-

12°
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nomials we find

. L
6 (ryp) = Jda,da,Glry,,0,,)D5 o(2),),

it

00
Py fcoss ,(ry ;01657 (ry,),

- Gio(rlz)Ggo(r12). (105)

Thus GL(rlz) is an Lth rank angular correlation. For L=0,
00 _
G, [rlzJ = IdQldQZG(rlz,ﬂlzj,
is simply the centre of mass pair distribution. Any GL(rlz) with L#0,
say Gz(rlz), expresses the correlation in orientation between a molecule

at the origin and another, distance T from it; we have, of course

12
GL(O) =1, For short interparticle separations e.g. when r is the

average nearest neighbour distance, Gz(rlz) can be taken to ééfine the
short-range order. For large separations Gz(rlz) is a measure of the
long~-range order. In this 1imit the pair distribution G(rlz,ﬂz,nzj re-
duces to the product of two singlet orientational distribution functions
f(nl)f(ﬂz) ( cf. eq. 36) and, similarly, the symmetrized distribution
PG(r12’Ql’Q2) tends to the symmetrized product P{f(Ql)f(Qz)}. For a

rotationally invariant phase we have

; 4.1L L
P{f(a)f(a,)} = T{(2L+1)/64n }Dnl,nZCQIZ)Dnl,nz(QIZ)’ (106)
with n, =n, = 0 for uniaxial molecules. Thus we find
G, (r,,) = IDY" (a) DY (a,) (107)
L "12 q 450 17 Tq,0° 7277

for large Ty,- Now, if T, is a separation much larger than any mole-
cular distance but small compared to the coherence length of the director

we obtain

L

L
GL(rlz) = DO,O(Ql) DO,O(QZ)

- 72, (108)

for large T)s when we assume local uniaxial symmetry. Thus we expect

the behaviour of, say, Gz(rlz) to change dramatically at the nematic-
isotropic transition. Above the clearing point in fact Gz(rlz) should
decay to zero with distance while in the nematic phase it should tend to
the square of the order parameter. This trend is apparent in our com-
puter simulations [21] described in Chapter 9 of the Maier-Saupe-Lasher[22]
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lattice model, wherf—ge find that in the ordered phase Gz(rlz) decays to
a plateau value of P2 after a relatively short distance corresponding to
a few shells of neighbours.

Let us add a few cautionary words, however, on what we mean by the
large distance limit in eq. (107). We have mentioned before that the

separation r although large compared to molecular distances, should be

12
small compared to the coherence length of the director. This is, of
course, because in an unoriented nematic and for truly macroscopic sep-

arations r the director will have to arrange itself to preserve the

12
spherical symmetry of the phase. Thus for distances greater than some
coherence length the correlation will be apparently lost. In the same

way there is no net macroscopic order in an unoriented nematic while there
is a long-range order given by the plateau of Gz(rlz).

Another advantage of introducing the pair correlation coefficients
GL(rlz) is that they can be used to describe the pretransitional effects
associated with the onset of ordering in the isotropic phase when app-
roaching the nematic transition. In this connection it is useful to
define a coefficient GL by

2

G. = fdrlzrlzGL (ry,)»

L

2
IdrlzrldeIdQZG(rlz,QlZ)PL{COSBIZ(rlz)},

as the area under the correlation rZGL (r). They can be used to describe
experiments in the pretransitional region such as the optical birefrin-

gence induced by a strong electric field (Kerr effect).

Nematics and Cholesterics

To examine briefly some differences between nematics and cholesterics,
let us go back to the expansion (101) for a rotationally invariant phase.
If the fluid is also centrosymmetric the pair distribution has to be in-
variant under inversion. Therefore we have for such a system that (Ll
+ L2 + L) has to be even in eq. (101). The same is not true if the
fluid is formed by optically active molecules. Thus for cholesterics
we have that (L1 + L2 + L) can be odd as well. The presence of these
odd terms indicates that the probability of finding two molecules at a
given orientation can depend also on the sign of the angle of the second
molecule with respect to the first. In other words the presence of odd
terms means that the characteristic twist of cholesterics can be obtained.
This aspect is described in greater detail in Chapter 5.
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Appendix
Irreducible -tensors and Wigner rotation matrices

A tensor of rank n is a quantity that transforms under rotation as
the nth direct power of a vector. The 3™ dimensional representation of
the rotation group realized in this way can be decomposed into a set of
irreducible representations D) each of dimension (2L+1). If we des-
cribe the rotations in terms of Euler angles (aBy) (cf. Chapter 17) then
the matrix elements of the irreducible representation in a basis where
Jz, JZ (Z.e. the angular momentum and its projection) are diagonal, are

{3] ;
~iad | -iJ. -ivd
Dr L(a8y) = <ILm|e 2o Ve Z|Ln>. (A1)

The matrix elements D;’n(aﬁy) are called Wigner rotation matrices, Wig-
ner functions or generalized spherical harmonics. Combinations of ord-
inary tensor components transforming according to the representation p(H)
are called irreducible tensor components of rank L and denoted by T(L’m),
e.g.
r(m’ = ypl yrthen), (A2)
n

Equation (A2) illustrates the main reason for the usefulness of irreduc-

ible tensors in problems involving rotations Z.e. that their transforma-
L)
T(l),

is called an irreducible tensor of rank L. The Euler angles @ in eq.

tion properties are very simple. The set of (2L+1) components,

(A2) determine the rotations which carry the original (unprimed) coor-
dinate system into the rotated (primed) one. We follow the convention
of Rose [3] for the Euler angles. From eq. (Al) it is apparent that
we can express D;’n(asy) as

L _ _~ima,L -iny
Dy p(eBy) = e dpy n(Ble ) (A3)
where the real quantities,
L -igJ
dm’n(e) = <Lm]|e Y|Ln>, (A4)

are called reduced or small Wigner matrices.
The functions D; n(asy) constitute a complete orthogonal set spanning
the space of the angles a,8,Y. Some of their properties, which we fre-
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quently use, are:

Orthogonalilty

. L* L _ 2
[dasingdpdy Dm’n(aay)Dm,’n,(aBY) ={8n /(ZL+1)}dm,m'dn,n'6L,L' . (A5)
Integral of three Wigner rotation matrices

. L' L L
Jdasingdgdy Dy (@BYID o (aBY) D (aBY)

_— 2 1" 1 1" . 1 1 .
= {8n°/{2L +1)}6m+m',m”6n+n',u”C(LL L",;mm")C(LL'L";nn'), (A6)
where C(abc;de) is a Clebsch-Gordan coefficient [3]. An equivalent ex-

pression can be obtained in terms of 3-j symbols [20] remembering that

-b- 1
C(abc;de) = (-)27P fad+e+f,0(zc+1)2 (3 b ;). (A7)

Closure

oo (@B, (A8)

L L -
EDm,n(allel)Dn,m'(QZBZYZ) =Dy

where (aBy) is the resultant of (alslyl) then (azezyz).

Symmetry
L* - ¢_ym-n.L _ nL e aL
D" (agy) = (4)"7DY (aBy) = DL (-y-B-a). (A9)
Products
L'+L"
Ll LVI _ Z L
m',n' m'",n" L:IL'I_LIIC(L'L”L;m'm")C(L'L”L;n'n”)Dm'Hn",n'+1’l"' (A10)
Special cases
L 1 %
Dm,o(aBO) = {4W/(2L+1)}2YL’m(Ba), (Al11)

L _ 4L -
DO,O(OBO) = do’o(s) = PL(cosB),
where YL n is a spherical harmonic and PL a Legendre polynomial.

We now give the explicit expressions for the Wigner rotation matrices
(and implicitly the order parameters) of rank L = 0,1,2,4. From eq. (A3)
we see that what we really need are expressions for the small matrices
di n(e). Some partial tabulations can be found in the literature [20].
In general however the d; L can be obtained from the Wigner formula [3]

»
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L _ Lmn q .
dm,n(s) = Ecqp cos(8/2)sinf (8/2), (A12)
where
q = 2L + m-n -2,
p = n-m + 2x,
clmns (o)X {(L+m)!§L-m)!(L+n)!£L-n)!}%
ap (L-n-x) ' (L+m-x) ! (x+n-m) ' x ¢

and the sum is over the values of the integer x for which the factorial
arguments are greater or equal to zero. The number of d;,n of a given
rank L to be calculated with this rather unwieldy formula is, in prin-

ciple (2L+1)2. This very high number of ak 0 for even moderately high

>

L can be drastically reduced if symmetry relations are taken into account;

L - -n.L
dy o (8) = ("R (8, (A13)
_ -n,L
= ()" ey (8. (A14)

Another helpful relation apparently never used in this context is

L ~ ¢_yL+m.L _
dp n(8) = ()7 7dp  (w-8). (A15)
We shall find this rather advantageous since it gives
(.
d__(8) = (-)L+m20;gnsinq(6/2)cosp(s/2), (A16)

because cos(n/2-8/2) = sin(B/2) and sin(wn/2-8/2)=cos(8/2). Eq. (Al6)

shows the important fact that if the dg n(B) are written as a combina-

tion of cos(8/2) and sin(B/2) powers then d; on is obtained by simply

exchanging sin(8/2) and cos(8/2) and multiplying the resulting expression
L+m

by (=) . As an example, from

di - c?(cb-15¢c*s%+30c%s%-105%),
we have at once
al | = ~s?(s%-1sstc?es0s%ct-10c%),

where ¢ = cos(B8/2) and s = sin(8/2). Applications of (A13-Al5) allow
the number of d;,n to be calculated to be reduced from (2L+1)2 to
(L+1)(L+2)/2; thus for L=4 only 15 elements are needed instead of 81.

In Table Al we give explicit expressions for the most important cases
L=0,1,2,4,
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L
Table Al Explicit expressions for the small Wigner matrices Ay n(B); L=0,
1,2, 4. Here ¢ = cos(B/2) and s = sin(B/2). ?

L =0
dg,o =1
L =1
di,l i dil,—l = c?
di,o ='d}1,o = -dé,i = dé,—l = -V2sc
di;& - dil,l = s?
dé,o = -1 + 2¢°
L =2
dé,z = dgz,-z = !
dg,l = —d?z,—l = _df,z = d?l,-z = -2¢5%s
dg,o = d?z’o = dg,z = dg,_z = /6 c?- /6 c*
dé,-l d?z,l = ‘dfl,z = df,-z = -2s55%¢
dg,-Z = d?z,z = 54
df,l = dfl,-l = —3c2e4ct
df,o - 'df1,0= -dé,l = dg’_l = V6 cs - 2 V6 cs
df,-l dfl,l = 3s5%-45%
dg,o =1 - 6c+6c?
L =4
d4 - d4 _ C8
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(Table Al
continued)
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dj’3 = ‘df4,-3 = 'd§,4 = dfs,-4 = -2/2 ¢’
a ,=at, ,=a), =at, =2/7 P
dj,l ==d_4 =-di’4 = dfl,—4 = -2/14 c°s®
di,o - df4,0 dé,4 = dg,_4 = /70 c*s?
dy .y = -at, - -at) =y, = - 2 cPs®
di,_z - df4,2 df2’4 dg,_4 = 2/7 c%s®
di‘_s =-af, o=l L, - aty = -z es’
di,—4 - d134,4 - s®
dé’s = dfs’_s = 0?7 Y
ad ymmaty = eay =, = /e st -as?)
af pmaty pmab g=at o= v tsieetssh)
T dy g = - 2/36 cPsP(e?-sh)
d;,_l- dfs,l = df1’3= di,~3 = V7 c254(5c2—3sz)
4y, =ty =mat, g = a) = v e s7(se?esY)
d%,—S = d?S,S = 56(7 cz-sz)
¢ =y 5" ct(c?-12¢?s%+155%)
4 = -dt, =-df,=dl =0 ¢3s(3 c*-15 c¢?s?+ 10 sh
dg’o = dfz,o = dg’z - dé,_z =/10 c¢2s2(3 c*-8c?s%+ 3 sh
dy o= -al, =mat - dj _, = =v2e s3(10 c'-15 c2s%+3 st
d;’_z = dfz’z = 5415 ¢t 12 %5 sh
at = g4 = cz(c6—15 c452 + 30 czs4— 10 56j
1,1 -1,-1
dﬁ’o = -t o= -dg ) = dg _="275 cs(c®-6cts?+6 c?st-s9)
a* = a* = s%(10 ¢®-30 c*s? + 15 %5t - )
1,-1 -1,1
at =c® - 16 ®s% + 36 c4s4 - 16 c%s® + 8
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