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We have studied in detail a simple model system with first- and second-rank
interactions first examined many years ago by Krieger and James with mean field
theory and used more recently as a prototype for bowlic and ferroelectric liquid
crystals. We have investigated the model applying Monte Carlo simulations and
two-site cluster theory and obtained its phase diagram. The existence of a
ferroelectric liquid crystal phase region in this non-chiral system is confirmed also
going beyond mean field theory. We also report short and long-range order
parameters of first- and second-rank as a function of temperature for various
ratios of the discriminating to non-discriminating interaction.

1. Introduction

Ferroelectric low molar mass [1] and polymeric liquid crystals [2] have become
extremely interesting both for their fundamental properties and for their applicability
in fast-switching electro-optic devices [3]. The only liquid crystals of this type that
have been prepared and studied to date are, to our knowledge, chiral smectic C
phases. There are, however, no reasons of principle to exclude other kinds of liquid
crystal ferroelectric phases [4] and it is interesting to develop simple molecular models
that try to find out the key ingredients that could give a ferroelectric liquid crystal. After
all also the existence of chiral smectic C ferroelectrics had been predicted before they
were actually synthesized. On a different ground it is curious enough that the contri-
bution of polar interactions be normally neglected even though one of the first theories
put forward on the structure of liquid crystals, due to Born [5], attributed the forces
responsible for liquid crystal orientational ordering to dipolar forces. This hypothesis
was later proved unsatisfactory as a general ordering mechanism, because no macro-
scopic dipole ordering is observed in nematics and, even more stringently, because
apolar nematics were synthesized [6, 7). Indeed such a great variety of different liquid
crystals has now been prepared [8] that the hypothesis of collective ordering effects
being due to a combination of different interactions both steric and attractive [9]
rather than to a single ubiquitous one has become a very plausible proposition. On
the other hand, although dipoles may not determine the existence of an ordered phase,
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they are nevertheless present in the great majority of nematogens and they will
produce some effect [10-17]. On an even more general basis, it is important to
introduce a simple way of characterizing the dissymetry between head and tail
existing in most liquid crystal molecules, and indeed in a number of elongated
mesogens, e.g. in the popular alkyl cyano biphenyls, we have a chain on one end (the
tail T, say) and a different group at the other end (the head H, say). Another prominent
example is in ordered membrane bilayers, where the distinction between the polar head
and the aliphatic chain is essential to the formation of the bilayer itself [18]. This is
particularly relevant now also for columnar mesophases, because of the synthesis of
classes of intrinsically asymmetric molecules, like those giving rise to pyramidic or
bowlic liquid crystals [19, 20]. These mesogen have a cone shaped structure realized, for
example, with a tribenzocyclononene [21, 22] or tetraphenyl [23] macrocyle with chains
attached. In general terms we could describe the non-equivalence of head and tail of two
parts of a molecule by means of shape multipoles [24] a concept relating to a systematic
analysis of the mass or repulsive centres distribution [25] formally analogous to the
more conventional analysis of charge distributions in electric multipoles. From this
standpoint bowl-shaped molecules have a shape dipole as well as having an electric
dipole. It is apparent that to treat liquid crystals made with these kind of molecules
we need a model potential with first rank as well as second rank contributions. We
can try to do this by introducing not a lot of very detailed and possibly ‘realistic’
terms, which would be on one hand overambitious and on the other too specific, but
rather just the first symmetry allowed potential term. This approach is also in the
spirit of the Lebwohl-Lasher [26] or Maier-Saupe family of potentials, which has
proved extremely useful in modelling nematics. Such a very simplified model was
actually introduced many years ago by Krieger and James (KJ) [27] for studying
orientational transitions in solids. The model consists of a set of particles placed on
a simple cubic lattice and interacting with the pair potential

U, = —¢,;[P(cosp;) + éPl(COSBij)]’ )]

where ¢; is a positive constant, ¢, for nearest-neighbours particles i and j, B is the
angle between the axis of these two molecules and P, is the Lth Legendre polynomial.
In figure 1 we see this P, P, potential for a few ¢ values. In (1) the P, term plays the
role of an aligning interaction, trying to bring the molecular axis parallel to one
another, while the P, term represents a discriminating interaction that can distinguish
the sense the second particle is placed with respect to the first. The parameter &
determines the relative importance of the first-rank term with respect to the second
one, while its sign determines ferroelectric or antiferroelectric type ordering or, in
other words, if the particles prefer to align in the same sense or in the opposite one.

We should stress that use of the common terms ferroelectric or antiferroelectric
does not imply that the discriminating force has to be an electric dipole. Indeed
electric dipoles, if strong enough to provide a discrimination, would normally tend
to pair out, corresponding to a negative &. Instead, it is worth pointing out that
both signs of £ can be of practical importance. For example we could have two
situations

H-T H-T
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Figure 1. The angular dependence of the Krieger-James potential (1) for £ = 0-2, 0-4, 2:0.

where H is an aromatic fragment and T an alkyl chain, as mentioned before. Arrange-
ment (a) would correspond to a pseudoferroelectric interaction, tending to bring
heads and tails together with their likes. From a chemist’s point of view, this arrange-
ment can be quite reasonable and can actually be more common, because of the
cumulative effect of the various intermolecular effects, than an antiferroelectric arrange-
ment (b) that would be obtained for purely dipolar interactions. A pseudo ferro-
electric arrangement is also likely when piling up bowl-shaped molecules [19-23], with
H and T marking the upper, concave, part of the bowl and its bottom, respectively.
The coefficients in (1) come from a general expansion of the potential and as such are
not necessarily associated with a specific kind of intermolecular interaction. Rather
they represent the sum of all the contributions to that rank from any kind of physical
interaction.

In their pioneering study Krieger and James (KJ) obtained, using mean field theory
(MFT) and, in some regions, an approximate cluster treatment, a phase diagram
for this model. There it was found that there should exist various regions of the phase
diagram corresponding to the ratio of first- to second-rank contributions. In par-
ticular at high £ we should have a polar to isotropic transition and at low £ both a
polar and a non-polar (nematic-like) phase should exist. A triple point was found at
¢ = 0-346. This potential has also been used as a simple model for ‘bowlic’ liquid
crystals by Lin Lei [19], who quoted in this different context the original phase
diagram of KJ. It is worth noticing that going beyond molecular field theory is
particularly important for a model like this. Indeed, MFT obtains the effective
potential acting on a molecule by the combined effect of all the others. This effective
potential then describes the change in energy of a molecule as its orientation referred
to the director changes. The theory does not describe the ordering of one molecule
with respect to the others and in particular of one molecule relative to its nearest
neighbours. On the other hand it is clear that on a molecular level short range
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ordering in this system will be important. We need to be able to distinguish between
a situation where neighbouring molecules tend to be aligned in the same sense or in
the opposite one. The model, with antiferroelectric interactions, has also been studied
by Chandrasekhar and Madhusudana [10] again employing MFT and Bethe approxi-
mation, although in that case a phase diagram was not calculated and the aim was
mainly on the effect of electric dipoles in the nematic phase. Other authors have used
the model to gauge the influence of polar terms on the elastic constant in the nematic
phase. Recently it has also been studied using Migdal transformation [28], although
these results seem difficult to assess in view of the reported differences with computer
simulation results obtained for other lattice models [28].

In this paper we shall go beyond mean field theory in two ways. First we present
a detailed two-site cluster (TSC) study of the phase diagram. Secondly we describe
Monte Carlo [29, 30] simulations for various values of & corresponding to different
regions of the phase diagram. The simulations have the aim to check the two-site
cluster (and of course molecular field) theory results and to get a general feeling for
the goodness of the phase diagram they predict. This is particularly important here,
where various transitions are predicted, since mean field theories are known to
enhance the order of a transition [31]. Moreover, we wish to calculate for these
selected situations some relevant observables, e.g. the pair distribution beyond nearest
neighbours that none of the two previous methods can give.

2. Two-site cluster method

Two-site cluster theory treats in detail two particles in the field of all the others.
The present method, already used by us [32] follows the lines of the classic work of
Strieb, Callen and Horwitz [33, 34]. We start from the total energy

2
Uy = ¢ Z <Z CLPL(COSﬁij)>s 03]
<y \L=1

where & = £ and &, = 1, the notation {i < j) indicates the different nearest-
neighbour pairs of indices i, j. The key point of the cluster treatment is to approximate
the Helmoltz free energy, Ay, as a sum of contributions from progressively larger
clusters. This is obtained from suitable separation of Uy and in turn of the partition
function

2
Z, = fdwl ... doy exp (%, Y Y &Pi(cos ﬂ,,)), 3)
G<jy L=1
where the molecular orientations are referred to the laboratory frame, chosen with the
z axis along the potential director. The volume element is {dw} = dw, dw, . . . dwy,
with dw; = dg; sin §; dB;. We can consider the molecules arranged on two equivalent
sublattices (this is true of simple cubic and body-centred cubic lattices), such that a
molecule in one lattice has all its nearest neighbours in the other lattice and vice versa.
Notice that there is a way, as pointed out by KJ, of mapping the ferroelectric into the
antiferroelectric partition function and back. Let us assume that all the particles with
odd indices are in a sublattice and the even labelled ones on the other sublattice. If
one makes the coordinate transformation g, = n — 6, on all the particles belonging
to one sublattice (e.g. j odd), this corresponds to arranging the molecules on a
sublattice in an anti-parallel configuration with respect to the other ones. Since the
partition is invariant for either choice of the coordinates, it follows that all thermal
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properties derived from the orientational partition will be the same in both the cases.
In other words an instantaneous configuration for the ferroelectric system gives, by
changing by = all the B angles of the other sublattice, a configuration for the
anti-ferroelectric system with the same energy. This does not mean that the average
microscopic properties of the two systems will be equivalent or that they can be
obtained one from the other. For instance, the configuration averaged odd-rank order
paramters for the antiferroelectric system may be zero, while for the other they are
quite different from zero. We shall see later on results for the order parameters and
for the pair correlation function for two systems with opposite £. We rewrite the total
energy as

G = —o 3 3 (6] neospneon) +« 3 th@idiw)]). @
i<jy L

using the spherical harmonics addition theorem [35]. Assuming that the lowest

symmetry phase we can obtain is a C,, one, we need at most two variational parameters

b,, b, to separate the Hamiltonian in two parts: an unperturbed one,

U’ = —¢ ) i & {—b] + b.[P(cosB;) + P(cos B}, (5)

Gi<jy L=1

and in a perturbation U’, non-linear in the expansion function

2
U= —¢ <Z,> LZI & {P.(cos By) + b, — b [P.(cosB;) + Py (cos )]} (6)

i<j =
The two parameters b; and b, introduced in this way are at this stage just arbitrary
separation constants. Later we shall neglect some of the terms resulting from the
separation and b,, b, will be treated as adjustable variational parameters to be deter-
mined by requiring that the free energy is a minimum. As a consequence of the

separation introduced in the potential, the free energy becomes a sum of two parts

Ay = A+ 4, )
where the unperturbed part,
—A° Nze & )
= = — NIn2, 8
T ~ kT X Z (b + NInZ, — NIn 8)

consists only of one particle contributions, with z the coordination number (z = 6 in
our case) and Z, is a single particle pseudo-partition function,

Z, = J dBsin Bexp <kT Z &b, PL(cosﬁ)> 9

At this level of approximation, the treatment is equivalent, after minimization of the free
energy with respect to b,

2A(,, b,) 3A(by, by)
oAb, b)) eA0L %)) _ g, 10
( ob, >b2 0 ( b, ), (10

to molecular field theory and it would yield b, = (P, ) for L = 1,2. An improvement
over molecular field is obtained expanding the correction term — A4’, following Strieb~
Callen-Horwitz [33], in an infinite cluster series as

— A
e z ()
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where the explicit general expression for the « cluster contribution is given in [33]. In
practice we retain here the first correction term, obtaining the so-called two-site cluster
approximation

-4 -4

T X kT (12a)
—U
= In < exp ( ”)> (12b)
<i;j> KT ]/ o
Nzg ¢
= INzInZ, — ngl &b — NzInZ,. (12¢)
The approximate free energy at two-site cluster level then becomes
kT kT
= iNzInZ, — (z - DNInZ,, (13b)
where Z, is the two particle pseudo-partition function,
P 2
Z, = Jdah dezexP (ﬁ |:bL(Z = 1) Y & [P(cosB)) + P.(cosp,)]
L=1
+ P, (cosﬁlz)D. (14)

The condition of minimum free energy with respect to the parameters b, gives the two
consistency conditions

Pz = PlcosB) + Pr(cosp)dz, L=1,2 )

where we indicate with {...>,, (..., the averages performed with the one- and
two-particle distributions (cf. (9), (14)). In practice we shall refer the free energy to the
standard isotropic state with complete disorder, thus we shall subtract the infinite
temperature contribution.

The various thermodynamic observables are obtained from the free energy. The
energy is obtained differentiating the free energy with respect to §, = 1/kT and insert-
ing the self-consistency conditions. This gives

W = — 2o + o) (16)

where g, 0, are short-range order parameters
o, = (P(cosfin))z,, a7

equal to the value of the rotationally invariant pair correlation at nearest-neighbour
distance r = a [30]

o, = Gi(a). (18)

As already mentioned the ability to calculate short-range order parameters represents
an important advantage of two-site cluster over mean field theory. There in fact the
relative order of two particles is the same for arbitrary separations and o, = (P, )% In
particular no short-range nematic order is predicted in the isotropic phase and no
residual short-range polar order is predicted by mean field theory in the nematic phase.
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An expression for the TSC heat capacity C¥ = C,/kN is obtained differentiating
the energy with respect to temperature

Ct = —p7 (j—g_) (19a)
zg? 2 do;,
- 2kT) LZ=:1 & (a_ﬂr> ) (155)

An analytic equation for the heat capacity can be obtained by first differentiating o, in
(17) with respect to ;. This gives an expression in terms of the temperature derivatives
of the variational parameters db, /0. This in turn can be obtained by solving the linear
system obtained differentiating both sides of (15) with respect to f; and solving the
resulting two by two system. We do not report the resulting equation, since it is too
complicated, although it is available to interested readers. The heat capacity results
obtained in this way have been satisfactorily checked with the simpler process of direct
numerical differentiation of the energy.

2.1. Details of the two-site cluster calculations

We have obtained the two-site cluster variational parameters b, and b, by direct
numerical minimization of the free energy, rather than by solving the system of
consistency equations. In practice we have used the MINUIT non-linear minimiz-
ation package from CERN [36] performing first a Monte Carlo search, then a
refinement of the minimum found using a gradient method. We have verified that the
consistency conditions are satisfied at the minimum. Working with double precision
in VAX FORTRAN we obtained the sum of residuals A,

2 112
4 = (Zﬁ I<PL) — 2<PL(cos By) + Pr(cos fr)) |2> (20)

always lower than 10~%. Minimization at a temperature near a previously studied one
was started from the variational parameters obtained before. In our opinion direct
minimization of the free energy functional presents several advantages, especially
when various potential thermodynamic phases exist. First the free energy functional
is concave in the parameters space, with an absolute minimum corresponding to the
equilibrium solution. On the contrary, solution of the consistency equations (15) can
give unstable or plainly non-physical solutions as well as the stable ones. Direct
minimization also requires a smaller number of integrals to be evaluated. For the
present case it requires calculating Z,, Z,,, while the consistency equations require six,
ie. Z, Zy, Pz, {Py>z, {Pi)z,, {Pr)z, The calculation of this set of integrals
has of course to be repeated at every step of an iterative procedure and the saving in
computer time can be substantial, especially for problems depending on more than
one variable.

3. Computer simulations

3.1. Cluster Monte Carlo

Our aim here is to determine the phase transitions of the KJ system for a set of
¢ values in order to determine the corresponding points in the phase diagram.
Determining transition temperatures and transition behaviour is a challenging exercise
in computer simulations [37]. To this end the choice of boundary conditions, i.e. of
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what environment to surround the sample with, is very important. The standard
method is to use periodic boundary conditions (PBMC) and consists of having
replicas of the sample box filling up as much space as needed by the range of the pair
interaction. Although clearly superior to a free space boundary, using periodic
boundary conditions leads to large smearing and broadening of the heat capacity and
order parameter derivative versus temperature peaks at a supposed transition. This
complicates the location of the transition itself and in turn often means that relatively
large samples, with many thousands of particles may have to be used [37]. Thus we
have first simulated the P, P, system employing the Cluster Monte Carlo (CMC)
method. In this technique, described in detail in [38], periodic boundary conditions are
replaced by a weaker condition that the particles inside and outside the sample box
have, on the mean, the same observable properties of those inside, rather than being
their exact replicas. The desired bulk average of a quantity A is written as an average
over the external ‘world’ configurations [W] of the average values (4>, calculated
for a fixed configuration of the ‘world’ outide the sample box. In practice a finite set
My, of external world configuration samplings is used and one has that a single
Monte Carlo average is replaced by an average of Monte Carlo results obtained for
a fixed environment [W]

Ay ~ Miw > (. @1

In practice the outside world configurations needed are obtained by creating a zone
of ghost particles outside the sample box having on average the same ordering
properties and, in particlar, the same singlet distribution and order parameters of the
system inside the box. Thus we assume a symmetry breaking field direction, defining
the Z laboratory axis and that the ordered phase is at most uniaxial around this
direction. We then calculate the order parameters relative to this direction, which
for the present case are just the Legendre polynomial averages {(P; D, ag,1.€. {P, Diap,

<P2>LAB’ AR ] <PL'>LAB9
Pows = 3 X Pulcosp). 22)

We proceed constructing the best Information Theory [39] inference for the
orientational distribution of tne particles outside the sample based on these
observables,

o
P(cosB) = exp ( Y a, P (cos ﬂ)), (23)
L=90

where the coefficients g, are determined from the constraint that the available (P, >
can be reobtained by averaging P, (x) over the distribution, with g, determined by the
normalization condition. In most cases studied we have used the first two relevant
order parameters, (P, > and {(P,), so that the most likely distribution has been taken
of the form

expla, P,(cos B) + a, P,(cos f)]
Jn dfsin Bexpla, P,(cosf) + a,P,(cosf)]

P(cosf) = (24)
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The coefficients a,, a, are in turn determined by solving the non-linear system

jw dp sin B P,(cos B)exp|a, P,(cos f) + a,P,(cos f)]
P oLas = . = s (259
J dfsin fexpla; P (cos B) + a,P,(cos f)]

[["apsing Pcosprexplar P cosp) + auPtcos )
(P = = . (25b)
J dpBsin Bexp[a, Pi(cos f) + a,P,(cosf)]

In two simulations we have generated the distribution outside the sample using
order parameters up to L’ = 3 in (23) and accordingly we have solved a system of
three nonlinear equations. The numerical solution of this system is performed using
IMSL library routines [32, 40]. The results we obtain are shown in figure 2. Notice
that the coefficients a,({P, ), <{P,)) and a,({P, ), {P,)) are not defined in the entire
({P, >, {P,)) plane, but in a domain delimited by the inequalities

P + 3 <P S EP) + D™ (26)

These restrictions follow in turn from Schwarz’s inequality [41] applied to the specific
trigonometric form of the first- and second-rank Legendre polynomials. The inversion
of (P>, {P,) to give a,, a, gets numerically difficult and has to be performed with
some care at high order, since an asymptotically large value of the parameters would
need to be obtained as the orientational order parameters are in reach of their
boundary value of one.

We have studied three systems of particles interacting with the P, P, potential (1)
on a simple cubic lattice with dimensions 8 x 8 x 8 for values of the first-rank to
second-rank ratio & = 0-2,¢& = 04, & = 2:0. We have also simulated 10 x 10 x 10
lattices for ¢ = —0-2, ¢ = 0-14, ¢ = 0-3. The calculations have been run in cascade
in a heating sequence. The first was started from a completely aligned system at low
temperatures and the others were normally initiated from an already equilibrated
configuration at the nearest lower temperature. The CMC procedure has then been
followed, thus, Metropolis Monte Carlo procedure has been used to update the lattice
for a certain number of cycles, i.e. of sets of N attempted moves. Each particle is
selected at random for an attempted move at every lattice sweep with a shuffling
algorithm [37] and a new trial orientation of the chosen particle is then generated by
a controlled deviation from the previous one [42). We have checked that an acceptance
ratio not too far from 0-5 is achieved in this way. After a pre-equilibration period the
order parameters (P, > a5 and (P, ,p inside the sample are calculated. These two
parameters are used to determine @, and g, and thus the distribution in (24) from
which new orientations for the ghost particles outside the box are sampled. For the
¢ = 0-14 and ¢ = 0-2 simulations, {P; > has also been used. We generate the orien-
tations of these external ghost molecules utilizing a simple rejection technique [14] and
check that both the order parameters {P, )., and {P,), relative to the particles
outside are the same as those inside calculated over M, cycles to an acceptable
threshold 6,, 6, defined as 0-05 statistical confidence level [43] as follows

0. = 196[0*((Pdow) + *(BDWN"? L =12, @7
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-0

Figure 2. The maximum entropy coefficients (a) a,, (b) @, defining the distribution in (24) as
a function of tue order parameters (P;> and {(P,).

where v({ P, ») is the variance. The generation is repeated if

[<PL>out - <PL>in| 2 (D

i.e., if the order parameters inside and outside the sample differ for more than a
threshold value o,. The energy of the system is then recalculated and evolution
proceeds as before. A small number (10-20) of micro re-equilibration sweeps is
discarded, then the new MC trajectory is followed in the usual way. In all the
subsequent cycles the order parameters with respect to the Z laboratory direction P/
for the molecules inside the box are still calculated. After a certain number of cycles
M an average is calculated for this K trajectory segment together with the attendant
standard deviation v,. These internal order parameters are then compared to the ones
outside. If the difference between them is statistically significant to a satisfactory
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confidence level [43] g,

_ o (TEKRD) | v KPP
n = 196( My * My, > ’

a new set of orientations for the ghost molecules is generated using the new order
parameters. If the order parameters inside and outside are not significantly different
the orientations outside are kept and the next check is made after a longer segment,
ie. Mg, > M. The number of cycles M is instead left constant if the order was
adjusted. This ensures on one hand that we do not choose incorrect order parmeters
outside and leave them unchanged. On the other hand since every change of the
outside layer will lower the short range correlation at the interface this method takes
care to do the updating only if really needed and not on every cycle or on the basis
of some wild fluctuation. A number of observables are calculated, as we shall see in
detail later on.

28)

3.2. Periodic boundary conditions Monte Carlo

We have studied a system of N = 1000 particles employing the standard Monte
Carlo Metropolis method with periodic boundary conditions (see, e.g. [30]) to get a
comparison with the CMC method. We have chosen a value of ¢ = 0-2 where both
a polar and a nematic phase is predicted to exist. The simulation has been run in a
completely independent manner from the previous CMC ones, so once more the run
at the lowest temperature studied has been initiated from a completely aligned system.
The calculations at the other temperatures have been started in cascade from an
equilibrium configuration at the nearest lower temperature. The same controlled
configuration updating procedure mentioned in the previous section [42] has been
employed.

3.3. Details of the simulation

Every property of interest, 4, is evaluated at every cycle. After a certain number
of cycles m, (here 2000) an average A” is calculated thus providing an effective coarse
graining of the trajectory. A further grand average is then computed as the weighted
average over M such supposedly uncorrelated segments. The attendant weighted
standard deviation from the average o, is also calculated and gives the error estimates
shown in the figures. We have calculated for each simulation energy, first-{P,>,,
second-( P, >, and fourth-{ P, ), rank order parameters. (P, )>; has been evaluated as
the largest eigenvalue of the ordering matrix as described in [30]. A first-order
parameter (the instantaneous polarization) is calculated as follows. We recall that the
eigenvector corresponding to the largest eigenvalue of the ordering matrix yields the
location of the instantaneous director 4. We then compute an average P, from the
scalar product between the director and the unit vectors u, specifying each particle
orientation in the laboratory frame. This sample averaged quantity for the Jth
configuration

1 N
P = 5|Lwd (29)
is further averaged over M configurations to give the polarization (P, ), as
1 M
<P1>/1 = ‘MZ(EX (30)
J
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Fourth-rank order parameters have been computed with the algorithm introduced in
[37]. These order parameters give the ordering with respect to the instantaneous
director. For the CMC method [38], where an external laboratory direction exist,
order parameters (P, ) with respect to the director have also been calculated. Pair
correlation coefficients [30] again of second and fourth rank have been calculated at
selected temperatures as described in [30, 37].

4. Results and discussion

Here we present the results of simulations and compare them with the two-site
cluster findings. We start with the phase diagram obtained from two-site cluster
theory, shown as the continuous lines in figure 3. This was obtained running a total
of 52 different ¢ cases. For each of these a detailed temperature scan was performed,
refining near the transitions. The character of a phase change and its properties were
estimated by running a heating and a cooling sequence across the transition with
temperature steps of the order of 10~° reduced units. In this way it was found possible
to follow the high and low temperature phase free energy with their metastable
branches and their intersection. The transition temperatures were then confirmed by
further refining until a free energy difference between the two adjacent phases below
10~° was attained. We estimate our transition temperatures to be accurate to the
fourth figure, even though we shall just quote TSC results rounded to the third,
because of the approximations built into the procedure itself. As we see from figure 3
the phase diagram is in qualitative agreement with that of Krieger and James [27]. We
also find three phases: polar, nematic and isotropic and a similar overall shape for the
phase diagram. In particular at low polar contributions a polar to nematic to isotropic
sequence is found. On the contrary at high ¢ the system goes directly from polar to
isotropic. However, there are significant quantitative differences. The three phases
coexist at a triple point

& = 03578, with T* = 12202,

where we introduce the dimensionless temperature T* = kT/e. The triple point was
located by KIJ at

&= 0346, with (T¥)* = 1-3212.

Krieger and James divided the phase diagram in five regions of ¢ (shaded in
figure 3). The character of the transition varies in these regions, as we see from
figure 4 where we plot the latent heat AU*. Even though the precise location of the
different regions indicated by the shadings cannot always be appreciated on a diagram
like this, it is apparent that the polar transition changes from a second-order to a
first-order one with 1/&, while the nematic-isotropic transition is always characterized
by a finite heat of transition. We compare here our results with those of Krieger and
James (in brackets).

RangeI 0 < 1/¢ < 0-61(0-6)

This is a situation dominated by the discriminating interaction. The
system has a polar phase, characterized by non vanishing {P, > and

{P,> and becomes isotropic with a second-order polar-isotropic
transition.

Range II 0-61(0-6) < 1/¢ < 1-82(1-7)
Here we still have only a polar ordered phase, however, the polar to
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Figure 3. The phase diagram determined by two-site cluster theory (continuous line) and

Cluster Monte Carlo results ¢ = 0-14,0-2,0-3,0-4,2-0 (W). T* = kT/eis the dimension-
less temperature. The inset shows a close up of the triple point region, ¢ > 0-3578,

T* = 1-20022. The different shaded areas correspond to regions where the character of
the transitions changes (cf. text and next figure).
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Figure 4. The latent heat of transition as obtained from two-site cluster theory reported as
a function of the inverse polar contribution term 1/£. The shaded areas correspond to the
ranges where the transition from the polar phase changes character. Of the two curves
starting in the dotted area the top one refers to the nematic—isotropic transition, the other
to the polar to nematic one.
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Figure 5. The single particle energy, U*

{U>|Ng, as a function of the dimensionless

temperature T* = kTJe for the model with & (@) — 0-2, (b) 0-14, (c) 02, (d) 0-3, (e) 0-4

and (f) 2
boundary

Range III

Range IV

-0. The results are for Cluster Monte Carlo simulations (M, O) for periodic
conditions Monte Carlo simulation (a), and two-site cluster theory (——).

isotropic transition is now first order, as we can see from the latent heat
in figure 4.

1-82(1-7) < 1/& < 2-7949(2-890)

Here we have a first-order polar to isotropic transition and a meta-
stable nematic.

2-7949(2-890) < 1/¢ < 3-45(3-2103)

For this £ span we have not only the polar phase but also a nematic,
with {P,> = 0and {P,) # 0. Both the polar-nematic and the nematic
to isotropic transition are of first order.
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lation (a), and two-site cluster theory (—).

Range V. 1/¢ > 3-45(3-2103)
This is the region of smallest discriminating contributions. We still
have two phases, but the polar to nematic transition is second order,
while the nematic-isotropic is first order.

Since we have adopted an algorithm, based on direct minimization of the free
energy, different from the usual solution of consistency conditions, we have verified
that KJ results can be recovered by truncating the cluster series at the first term (mean
field theory level). The difference is thus to be assigned not to the different way of
solving the problem but to the usual overestimation of the transition presented by
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Table 1. The nematic-isotropic transition temperatures (T3%)., for the KJ model with
¢ = —02,014, 0-2, 0-3 as obtained from the PBMC and CMC computer simulations
and from TSC theory. We also report the estimates for the transition values of the heat
capacity, the first-rank (P,) and the second-rank order parameter {P,) obtained, in
the case of simulations, from the diagonalization procedure. The nematic-isotropic
transition remains first order and the order at the transition remains essentially constant
at different &.

¢ Method (TR, (Cam <P <Pyt

—-02 CMC 1-14 13-4 + 05 0-015 + 001 0-37 + 0-03

014 CMC 1-14 12:3 + 05 003 + 0-01 0-36 + 0-02
TSC 1-166 16-6 0-0 0-387

PBMC 1-14 71 + 05 0-03 + 0-01 0-34 + 0-02

0-2 CMC 1-14 14-3 + 09 0-04 + 001 0-40 + 0-02
TSC 1-173 15-6 0-0 0-387

03 CMC 1-16 14-3 + 0-8 0-05 + 001 0-39 + 0-03
TSC 1-188 169 0-0 0-387

their mean field theory [37]. We notice that the polar interactions are in general
stabilizing an orientationally ordered phase compared to the isotropic one. Indeed we
see by looking at the phase diagram that the transition moves to higher temperatures
as ¢ increases. This is true also for small £ and is to be expected from thermodynamic
perturbation theory [44]. Indeed if we consider the purely second-rank potential as a
reference, a first-rank perturbation has a different symmetry and does not contribute
at first order to the energy. The non-vanishing second-rank contribution always has
a negative sign and leads to energy stabilization.

The Cluster Monte Carlo phase diagram results are also reported in figure 3 as the
square symbols and as we see they confirm the two-site cluster findings. As mentioned
before we studied three 8 x 8 x 8 (¢ = 0-2, 04, 2-0) and three 10 x 10 x 10
(€ = —02, 0-14, 0-3) systems with CMC method and a 10 x 10 x 10 (¢ = 0-2)
with the PBMC method. For each of these systems a large number of temperature

Table 2. The polar-nematic transition temperature (T3 )¢, for the KJ model with & = —0-2,
0-14,0-2, 0-3 as obtained from the PBMC and CMC computer simulations and from TSC
theory. We also report the estimates for the transition values of the heat capacity, the first
rank ((P, ») and the second-rank ({ P, ») order parameter as obtained from PBMC, CMC
simulations and using TSC theory. The transition is a steep continuous one for
¢ = —02, 0-14, 02 so we report the values of the order parameters at the point
immediately after the transition. We cannot assign the character of the transition at
¢ = 0-3 (this is in range IV).

¢ Method (T )cv (Caxden {Piom {Pyopn
—-02 CMC 0-78 42 + 08 0-015 £+ 0-001 0-782 + 0-002
0-14 CMC 0-64 45+ 05 003 + 0-02 0-82 + 001
TSC 0632 3-5 0-0005 0-843
PBMC 0-84 39 + 05 0-05 0-747 + 0-001
0-2 CMC 0-84 74 + 05 0-06 + 001 0-767 + 0-01
TSC 0-8562 45 0-020 0-7614
0-3 CMC 1-08 99 + 05 - 0-61 + 001

TSC 1-116 10-9 0-2016 0-5763
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Table 3. The polar-isotropic transition temperature (7g;)¢, and properties, as in table 1. The
transition for ¢ = 0-4 (belonging to range III in the phase diagram) is a first-order one
and the values reported are just before the jump to isotropic. On the contrary the
transition for £ = 2 is a broad continuous one (cf. figures 7 and 8) and the first and
second rank order parameters given are just those at the temperature corresponding to
the heat capacity peak.

¢ Method (T#)e, (Chade {Powm {Pdm

0-4 CMC 1-22 54 + 10 0-54 + 0-09 0-52 £ 0-04
TSC 1-238 38-8 0-575 0-552

20 CMC 3-40 85 + 09 0-38 + 0-08 0-13 + 0-03
TSC 3-625 69 0-0452 0-0015

runs were performed, as we can see from the figures, where the results of a total of
about 200 runs are collected together. To start with we show in figure 5 the energy as
a function of temperature. The temperature range is normally different for the various
systems to concentrate on the respective transition regions. Notice, however, the
comparison between the system with £ = —0-2 (top left) and £ = 0-2 (just below
that) which shows that the behaviour for the two systems is essentially the same. This
is to be expected for the argument reported in section 2 [27], even though here we are
talking of actual computer experimental results on finite systems.

The heat capacity obtained by simulation and by TSC is shown in figure 6. It is
obtained by performing a quasi-cubic Hermite interpolation [40] of the energy against
temperature points and differentiating. The transition temperatures for the simu-
lations were located from the heat capacity and the order parameter derivative peaks.

Our estimates for the transition temperatures and properties are given in tables 1
to 3 for the nematic—isotropic, polar-nematic and polar-isotropic transitions, respect-
ively. As we have already seen both Krieger and James and two-site cluster calcu-
lations have found that the character of the polar to isotropic transition changes from
first- to second-order as the strength of the polar contribution, &, increases moving
away from the triple point. The polar to nematic transition also changes character,
being second order for very small £. We could not examine all of these features of the
phase diagram with computer simulation at least at this stage. The change in character
of the transitions with ¢ is, however, apparent from the energies and heat capacities.

In the transition regions the simulations presented some difficulties of convergence
and fairly long runs were required. For the PBMC simulation we have used at least
15000 equilibration cycles far from the transition and 25000 in the pseudocritical
region. For the CMC simulations we have in general discarded at least 20000 and
30000 equilibration cycles before starting production respectively when far or near
the transition. At low ¢ values (0-14, 0-2) and at low temperature equilibration was
extremely slow. We have discarded up to 3 x 10° cycles in these few cases. The
production runs were also of varying length, according to the distance from the
transition. Close to a phase change sequences of about 4 kcycles have been used for
the CMC and for the PBMC simulation.

The increase of the proportion of discriminating interaction has quite a profound
effect on the behaviour of the system. For £ = 0-14 and 0-2 the system undergoes two
transitions. The separation in temperature between the two transitions decreases as
¢ increases. For ¢ = 0-3 the two transtions are very near (cf. inset in figure 3). For
the two higher values of ¢ only one transition is apparent. A plot of the first-rank
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Figure 7. The first-rank order parameter (P;) plotted against reduced temperature T*
obtained from CMC (B, O) at & (¢) 0-2, () 0-4, (f) 2:0 (8 x 8 x 8 lattice) and & (a)
—0-2, (b) 0-14, (d) 0-3 (10 x 10 x 10 lattice), from 10 x 10 x 10 PBMC (a) (only
¢ = 0-2), and TSC theory (—). Notice the different temperature ranges for the various
cases.

order parameter against temperature as shown in figure 7 manifests that the low
temperature phase is a polar one with (P,> # 0.

Above the first transition, if present, (P, is zero within our experimental error. A
similar plot for the second-rank order parameter, shown in figure 8, demonstrates that
(P, is greater than zero between the first and second transition and in general up to
the highest temperature change of phase. The order parameters (P, >, o5 have similar
behaviour and are not reported, thus we can call by metaphor this mesophase a nematic
one. Noticed that the occurrence of the polar to nematic transition goes unnoticed if
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Figure 8. The second-rank order parameter, {P,) plotted against reduced temperature 7*
obtained from CMC (m, O) at & (¢) 0-2, (¢) 0-4, (f) 2:0 (8 x 8 x 8 lattice) and ¢
(@ —0-2,(b)0:14,(d)0-3 (10 x 10 x 10]lattice), from 10 x 10 x 10 PBMC (a) (only
¢ = 0-2), and TSC theory (—).

only second rank properties are monitored. Indeed, the second-rank order parameter
varies regularly until it drops to zero at the nematic-isotropic transition.

The general agreement between simulations and two-site cluster results is fairly
good both for the transition location and for the temperature dependence of the order
parameters. We do not show, for economy of space, results for the fourth-rank long
range order parameters since they do not modify the overall picture. In figure 9 we
show instead the first and second-rank short-range order parameters.

As already mentioned in section 2, these short-range order parameters correspond
to the nearest-neighbour distance value of the pair distribution G, (r). g, describes the
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ability of a molecule to discriminate the sense of the orientati
neighbours. In figure 9 we show the temperature dependence of the
results compared with the TSC prediction (dotted line). The short
is non zero in the nematic even though it is greatly reduced comp
electric phase values. Computer simulations allow to calculate
dependent pair correlation G, (r). In figure 10 we plot G,(r) and G

—I—*
o, = {cosf,> and

btained from Monte
at short-range polar

on of its nearest
8 x 8 x §CMC
range polar order
ared to the ferro-
the full distance
,(r) together with

the nearest-neighbour value from TSC at three different temperaturcls and for £ = 0-2.

We also show, with a dashed line as a guide to the eye, the res
ferroelectric choice of ¢ at the lowest temperature (cf. top left plate)
oscillates, with the negative values corresponding to the probabili
parallel molecular pairs.

5. Conclusions

We have shown that a simple combination of a second-rank al
and a first rank discriminating interaction simulating the head-
sufficient to obtain a polar liquid crystal as well as a nematic pha:
do not have to be the interactions presiding to discrimination but rz
produced by other molecular mechanisms, as discussed in section |

ults for the anti-
In this case G, (r)
ty of finding anti-

igning interaction
tail asymmetry is
se. Dipolar forces
ther this could be
. If, however, the
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Figure 10. The first- and second-rank order short range correlation function G, (r) = {cos ),
and G,(r) = {(P,(cos B,)), against separation r in lattice units. Results for £ = 0-2 as
obtained from CMC simulation at 7* = 0-78, 1-080, 1-20 from top to bottom. A line
through the points is drawn as a guide to the eye. We also report at 7* = 0-78 G,(r) for

¢ = —0-2 (dashed line). The symbol is the two-site cluster resuit for nearest-neighbour
separation.

molecules carry a dipole, the long-range order of the mesophase with (P} # 0 will
provide ferroelectric behaviour. The polar mesophase either is the only ordered phase
or, when the discriminating interactions are about 20% of the aligning ones, occurs
at temperature of the order of 30% lower than that for the isotropic transition.
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Attaching the mesogenic units as side groups in a polymer liquid crystal might be a
way of reducing the change of crystallization and thus of observing the hitherto
unobserved uniaxial ferroelecltric phase. Here we have shown that two-site cluster
theory and Monte Carlo computer simulations basically support the phase diagram
for the model obtained by Krieger and James, although significant quantitative
differences are found. We have provided detailed results for first- and second-rank
order parameters and for their temperature dependence that could in turn constitute
the basis for predicting the relaxation properties of a uniaxial ferroelectric liquid
crystal.

The simulations were performed on various clustered DEC VAXes and VAXstations
at Dip. Fisica-INFN, Bologna and on a VAX and two VAXstations at Dip. Chimica
Fisica. We wish to thank Consorzio INFM for financial support through Progetto
Polimeri Liquid Cristallini. MPI and CNR are also thanked for supporting part of
this work.
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