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Molecular dynamics computer simulations have been employed to demonstrate that the addition of a suitable uniaxial
discotic nematic to a biaxial nematic (Nb) of elongated mesogens can give rise to a low temperature Nb liquid crystal
(where the rod�like particles would form a biaxial smectic). The two species are made to be fully miscible over the
entire isotropic and nematic temperature range by a suitable parameterisation of shapes and pair interactions. The
disc�like mesogen, even though not forming a biaxial nematic by itself gives a stable low�temperature discotic nematic
which strongly disfavours the formation of columnar and smectic phases in the two�components system.

1 Introduction

The development of biaxial nematics (Nb) promises to
open up a new generation of displays and other electro�
optic devices, through the control of the orientation of
two, rather than one, directors i.e., the preferred direc-
tions of alignment of the liquid crystalline material 1.
Although the �rst Nbs discovered, and the only ones

for a long time, have been lyotropics 2,3, polymerics4,
or, more recently, polydisperse mixtures of board�like
goethite particles 5,6, hardly suitable for normal dis-
plays, in the last few years relatively low molar mass
thermotropics have been reported for various classes of
molecules ranging from bent�core 7,8 or V�shaped9, to
�exible silicon tetrapodes 10.
Besides these successes, none of the currently avail-

able thermotropic Nb materials still appear to be easily
utilisable in practical electro�optic devices either because
of their very high temperature nematic range (e.g. over
373 K for the bent�core mesogens in refs. 7,8), or because
of their high viscosity 11 and slow response. Therefore,
Nb mesogens are still actively pursued, and even if tun-
ing the properties of materials, and liquid crystals in
particular, is an art that synthetic chemists have per-
fected (see e.g. for reviews1,12,13). The di�culty here
lies in obtaining a Nb, rather than one of the compet-
ing phases, such as a uniaxial nematic, biaxial smectic
or crystalline solid, when attempting molecular modi-
�cations around the known mesogenic molecular struc-
tures. The risk seems to be particularly high for the
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Table 1 Parameters of the biaxial GB potential for the

model mesogens used in this work. Ellipsoids axes σ
(i)
a are in

σ0 units, well depths ε
(i)
a are in ε0 units, while masses mi are

in m0 units. The exponents µ = 1, ν = 3, and the parameter

σc = 0.714 σ0. The dimensionless scaling parameters used

for the homogeneous rod�rod and disc�disc interactions were

erod−rod = edisc−disc = 1, while for the heterogeneous
rod�disc ones we used erod−disc = 1.8

type i mi σ
(i)
x σ

(i)
y σ

(i)
z ε

(i)
x ε

(i)
y ε

(i)
z

rod 3 1.4 0.714 3 1 0.9 0.2
disc 2 1.4 2 0.714 1.29 1.6 0.2

important task of lowering the biaxial nematic transition
temperature while avoiding the formation of smectics as,
for instance, favouring face�to�face packing will help in
making the organisation biaxial, but not necessarily ne-
matic14. As an alternative to obtaining a suitable one�
component mesogenic material, another chemical way of
tuning properties is that of employing mixtures, and in-
deed many of the commercial products actually o�ered
by industry in liquid crystal displays are uniaxial formu-
lations of various (up to 5�7) components.

Binary mixtures of uniaxial elongated (rod�like) and
squashed (disc�like) mesogens have been recognised by
Alben more than thirty years ago 15 as a possible path-
way towards a thermotropic Nb. The rationale is par-
ticularly simple and appealing: whenever packing den-
sity increases the uniaxial rods and discs will align in the
nematic phase along two mutually orthogonal directions
and, as long as the two species are miscible, a macroscop-
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ically Nb phase should result 15,16.
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Fig. 1 Representative Gay�Berne energy pro�les for the

homogeneous (plate A) rod�rod (solid, red) and disc�disc

(dashed, blue), and heterogeneous (plate B) rod�disc

(dotted, green) pair interactions in the side�by�side ,

face�to�face , and end�to�end con�gurations using the

parameterisation described in the text and Table 1

Unfortunately, Alben's sketch assumes as a necessary
prerequisite the full miscibility of the molecular species
over the entire phase diagram (or at least over the range
of temperatures used in the target applications). This as-
sumption severely limits the possibilities o�ered by mix-
ing. Indeed, full mixing is expected for mesophases of the
same nature and this is often a technique used to assign
a phase to one of the known types 17,18. However, the
formation of a homogeneous phase can not be taken for
granted when using molecules of di�erent shapes result-
ing from very di�erent chemical structures, like elongated
and squashed thermotropic mesogens. As it comes out,
the general outcome of most experiments 19�21, as well as
theories22�29, and computer simulations 30 is that rod�
like and disc�like mesogens (either with typical molecu-
lar shapes or approximating the in�nitely long or thin

limit) will eventually demix at low�temperatures and/or
high�density.

Several strategies have been attempted to avoid demix-
ing, connecting rod�like and disc�like mesogens by
weak bonds31 or �exible linkers 32. Experiments rely-
ing on enhanced lateral interactions 33,34 or shape am-
phiphiles35,36, have not been successful so far 13, unless
in the presence of an external electric �eld 37. The situa-
tion has recently started changing for the better. In par-
ticular, Kouwer and Mehl 38, and Apreutesei and Mehl 39

have experimentally demonstrated the full miscibility of
certain rod�like and disc�like mesogens, and even though
these mixtures are not Nb themselves, this result demon-
strates that the entropic�driven demixing process can
be surmounted. Bates, Vanakaras and Photinos 40 have
shown by Monte Carlo (MC) computer simulations how
by properly choosing the shapes of hard biaxial brick�
like particles this entropic hindrance can be overcome at
least when the long axes are completely ordered. Further-
more, avoiding the strong limitation of complete order
Jackson and coworkers 41 have shown, also by MC simu-
lations, that Nb phases can be obtained by mixing elon-
gated spherocylinders and discotic cut�spheres with suit-
ably tailored anisotropic heterogeneous attractions be-
tween the otherwise hard particles. On the experimen-
tal side the �ndings of Vroege and co�workers 5,6, even
though involving colloidal mixtures of polydisperse biax-
ial clay platelets (and not single molecule systems), have
demonstrated how the shape polydispersity of colloidal
particles favours Nb phases by inhibiting the formation of
highly ordered and densely packed smectic or solid organ-
isations. The theoretical model of Ratón and Cuesta 42

gives an interpretation of this behaviour and predicts sta-
ble biaxial nematics from polydispersed mixtures of elon-
gated and squashed uniaxial hard parallelepipeds.

In this paper, we wish to show that even using just
a monodisperse binary mixture we can, by tuning both
shape and molecular interactions, e�ectively counteract
demixing and realise a low temperature Nb phase. In par-
ticular, we believe this can be done by mixing elongated
and squashed biaxial mesogenic particles interacting via
an anisotropic attractive�repulsive anisotropic potential
which does not involve speci�c weakly bonding rod�disc
interactions but which confers a dual calamitic�discotic
mesogenic nature to both molecular species. To demon-
strate it we have deployed molecular dynamics (MD) sim-
ulations of elongated and squashed attractive�repulsive
biaxial ellipsoids.

The plan of the manuscript is as follows: in Section 2
we show the pair potential and the parameterisation used
for the mesogenic particles; in Section 3 we report the
technical details of the computer simulations; in Section 4
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we discuss the MD results; eventually some �nal remarks
conclude the paper. In the Appendix we describe the
algorithm devised for the computation of global order
parameters for a two�components mixture of biaxial el-
lipsoids.
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Fig. 2 Average dimensionless potential energy per particle

〈U∗〉 = 〈U〉/ε0 (plate A), and sequence of phases (plate B)

as a function of dimensionless temperature from a

cooling�down sequence of MD simulations of the three

N = 4096 systems described in the text. The phases

observed are identi�ed as biaxial smectic Sb (�lled triangles),

biaxial nematic Nb (�lled squares), uniaxial nematic N (�lled

circles), and isotropic (I) (crosses). Error bars in plate A

(see also Tables 1, 2, and 3) are typically smaller than the

symbol size and are not appreciable in this representation

2 Molecular model

The anisotropic pair interaction between the mesogenic
species of this work has been computed by the biax-
ial extension of the Gay�Berne (GB) potential 43�45 be-
tween two rigid ellipsoidal particles of species α and β
(see also46 for another formulation). The GB energy
is parameterised in terms of the ellipsoids axes lengths

σ
(i)
x , σ

(i)
y , σ

(i)
z , and of the interaction strengths ε

(i)
x , ε

(i)
y

and ε
(i)
z , with i = α, or β. The coe�cients ε

(i)
x are pro-

portional to the well depths for the side�by�side, face�to�
face, and end�to�end interactions45. Two exponents µ, ν

and the minimum contact distance σc allow to tune the
shape of the energy wells 44,45,47 . The potential between
a pair 1, 2 of biaxial molecules of species α and β can be
written as

U(r,Q) = 4ε0 ε(r,Q)
[
u12(r,Q)− u6(r,Q)

]
, (1)

where u(r,Q) = σc/(r − σ(r,Q) + σc). The distance
and energy units are σ0 and ε0. The symbolQ stands here
for the two quaternions 48,49 [q(1)〉, and [q(2)〉 de�ning the
orientations of the two particles in the laboratory frame,
while r = r2−r1 is the intermolecular vector, with length
r. The anisotropic contact term is

σ(r,Q) = r
[
2 rTA−1r

]−1/2
. (2)

The symmetric overlap matrix A ≡ A(Q) is de�ned in
terms of the diagonal �shape� matrices S(i) as

A = M(1)TS(α)2M(1) + M(2)TS(β)2M(2) , (3)

where the elements are S(i)
a,b = δa,bσ

(i)
a . The cartesian

rotation matrices for the two molecules M(n) ≡M(mn ←
l), with n = 1, and 2 perform the active rotation from
laboratory to molecular frame, and are de�ned 48,49 in
terms of the quaternions [q(i)〉. The anisotropic interac-
tion term is

ε(r,Q) = eαβε
ν
A(Q)εµB(r,Q), (4)

where the coupling parameter eαβ allows to modulate
the range of energy surfaces for the interaction of like
(α = β) or unlike (α 6= β) ellipsoids. The dimensionless
strength coe�cient εA is

εA(Q) =
[
σxσy + σ2

z

] [ 2σxσy
det[A]

]1/2
, (5)

and the dimensionless interaction parameter εB is

εB(r,Q) = 2r−2 rTB−1r. (6)

The interaction matrix B ≡ B(Q) is de�ned in terms
of the auxiliary diagonal �interaction� matrices E(i) as

B = M(1)TE(α)M(1) + M(2)TE(β)M(2) , (7)

where the elements are E(i)
a,b = δa,b(ε0/ε

(i)
a )1/µ. Ex-

plicit expressions for the gradient and torques of the bi-
axial GB potential are given in refs. 49,50.
The speci�c parameterisation for the two species of bi-

axial GB particles with dual behaviour used in this work
has been chosen relying on a number of previous results:
(a) particles with similar cross section but incommensu-
rate lengths40; (b) weakened homogeneous rod�rod and
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disc�disc interactions (akin in a sense to weakly attrac-
tive rod�disc interactions 31,41); and (c) opposite shape
and interaction biaxialities 47. All of these properties con-
tribute to achieve several modelling goals: (a) limit the
formation of positionally ordered low�temperature organ-
isations; (b) enhance lateral side�by�side attractions with
respect to face�to�face (see Figure 1, and Table 1) to
obtain duality; and (c) prevent the demixing between
rods and discs (usually taking place at the isotropic�
nematic phase transition or at low temperatures). In
practice, point (a) has been achieved by means of mod-
elling the shape, as suggested by Vanakaras, Bates and
Photinos40, so that both prolate and oblate ellipsoids
share two axes lengths while the third ones have incom-
mensurate lengths. Regarding points (b) and (c), the

ε
(i)
a coe�cients for both species (see Table 1), and the
parameter erod−disc = 1.8, were chosen to give homo-
geneous rod�rod and disc�disc and heterogeneous rod�
disc interactions of comparable strength (see Figure 1).
Regarding the interaction anisotropy, all lateral side�

by�side attractions were enhanced with respect to those
face�to�face (especially for disc�disc pairs). Concur-
rently, the potential surface for rod�rod interactions has a
≈ 40% weaker side�by�side attraction between particles
previously studied 47, to also match the energies between
squashed ellipsoids. This tuning of a common attractive�
repulsive model is di�erent from the approach of Cuetos,
Galindo and Jackson 41 relying on speci�c rod�disc at-
tractions of a di�erent nature from the purely repulsive
homogeneous interactions between hard particles.

With this three�parts recipe both elongated and
squashed particles possess a dual nature consisting in
steric contribution arising from the shape anisotropy
which competes with an opposing enthalpic one due to
the attractive part of the potential.

3 Systems studied and simulation details

We have performed three series of isobaric�isothermal
molecular dynamics simulations on a set of bulk sam-
ples formed by N = 4096 biaxial GB particles: two for
each one�component systems of elongated and squashed
mesogens, and one for their equimolar mixture (see Ta-
ble 1). The cuto� radius for the GB interactions was
rc = 4 σ0, and a neighbour list of radius rl = 5 σ0
was also employed for all simulations. The dimensionless
time step was chosen as ∆t∗ = (ε0/σ

2
0m0)1/2∆t = 0.002,

where m0 is the unit for mass. The standard velocity�
Verlet integrator 51,52 has been used for the translational
equations of motions, while the rotational trajectories
have been determined using the approach of refs. 49,53,54 .
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Fig. 3 The average overall 〈R2
00〉 (plate A), and 〈R2

22〉
(plate B) orientational order parameters, as a function of

dimensionless temperature from a cooling�down sequence of

MD simulations of the N = 4096 systems. See Figure 2 for

additional details

The sample was maintained at constant temperature
T ∗ = T/(k−1

B ε0), and pressure P ∗ = P/(σ−3
0 ε0) = 8

by means of the weak coupling thermostat and baro-
stat due to Berendsen 55, with dimensionless time con-
stants τT = 10, and τP = 100. Every series of MD sim-
ulations consisted of a temperature scan performed as
a gradual cooling�down sequence of a well equilibrated
isotropic sample. Successive runs were started from the
�nal equilibrated con�guration of the previous temper-
ature. In all cases, equilibration runs were not shorter
than 200 k time step, after which the thermodynamic ob-
servables have been sampled every 20 k time step from
production runs 250 k time step long. A blocking algo-
rithm56 has been used to compute averages and error esti-
mates. We have found isotropic (I), uniaxial nematic (N),
biaxial nematic (Nb), and biaxial smectic (Sb) phases, but
not columnar ones 57.

The average uniaxial and biaxial order parameters rel-
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evant to the experiment can be de�ned as ensemble aver-
ages with respect to the single particle distribution func-
tions of symmeterised Wigner matrices, i.e. scalar prod-
ucts involving the particle molecular axes and the director
frame axes n, m, and l = m× n58,59

〈R2
00〉 =

〈
3

2
(z · n)2 − 1

2

〉
, (8)

〈R2
22〉 =

〈
1

4

[
(x · l)2 − (x ·m)2 − (y · l)2 + (y ·m)2

]〉
.

(9)
The order parameters are computed from the eigen-

values of single�species ordering matrices 47,58, and for
the one�component systems the standard algorithm 58 is
generally su�cient. These de�nitions can be extended to
uniform uniform multi�species mixtures, and in the Ap-
pendix we describe the simpli�ed protocol for the present
case of biaxial ellipsoids.

4 Results and discussion

The location of the spontaneous ordering transitions in
the two single�component systems and in the mixture
were determined from the average values of potential
energy, orientational order parameters, and radial pair
correlation functions obtained from the MD temperature
scans which we now discuss in turn (the thermodynamic
and ordering properties for the three families of samples
are given in Tables 1, 2, and 3). No detailed free energy
studies have been performed since we are interested in
qualitative and semi�quantitative explorations to deter-
mine the outcome of the chosen paramterisation.
In Figure 2�A we plot the average values for the di-

mensionless potential energy per particle 〈U∗〉 = 〈U〉/ε0.
We see that there are no strong discontinuities of the
energy across the phase transitions (shown in Figure 2�
B as di�erent symbols for every simulated state point).
In particular, the spontaneous I�N ordering transitions
for the single�component elongated and squashed sys-
tems take place with very small jumps in the average
energy. This is also true for number density 〈ρ∗〉 =
〈ρ〉/σ−3

0 = 〈1/V 〉N/σ−3
0 (given in Tables 1, 2, and 3).

A similar behaviour was also observed in correspondence
of the N�Nb transition for the prolate particles. Only
across the Nb�Sb (single�component elongated) and the
I�N (equimolar mixture) we have found a signi�cant dis-
continuity in energy and density. The 〈U∗〉 values for
the single�component disc and equimolar mixture sys-
tems are fairly close along the entire temperature range,
while for the rod�like samples this was found only for

the low�temperature biaxial smectic phase. Figure 2�B
summarises the sequences of phases and transition tem-
peratures observed for the three thermotropic systems.
The order parameter pro�les in Figure 3 are the most

telling observables for the identi�cation of the present
temperature�driven phase transitions. Upon cooling the
isotropic sample of the rod�like particles a sequence of
N, Nb, and Sb phases are encountered (Table 1), with
appreciable discontinuities in 〈R2

00〉 only across the I�N
transition. We notice that the single�component system
of rod�like particles has a phase diagram similar to the
one for ellipsoids with same shape but stronger lateral in-
teractions47: all ordering transitions are shifted to lower
temperatures, while the stability ranges for the N, and
Nb become wider.
The single�component discotic system has an I�N tran-

sition at slightly lower temperature with respect to the
�uid of elongated particles, and the biaxial order parame-
ter 〈R2

22〉 remains zero over the entire temperature range
explored by our MD simulations (Table 2). The discotic
nematic phase is very stable and extends even to the
lower bound of the explored temperature range, where
the calamitic system is smectic. This behaviour is un-
usual as few mesogens forming a nematic discotic but
not a columnar one are experimentally known 60�63, and
even with computer simulations a certain parameterisa-
tion of the anisotropic potential is necessary to observe
this57,64.
The visual inspection of the equilibrated MD con�gu-

rations shows that the equimolar binary mixture remains
in a uniform state at all temperatures and undergoes an
I�N transition at a temperature which is intermediate
between those observed for the single�component �uids
(Table 3). Also the uniaxial nematic phase has an order
parameter 〈R2

00〉 slightly smaller than those for the rod
and disc systems. At temperatures lower than T ∗ = 1.9
the average 〈R2

22〉 order parameter becomes not zero and
the equimolar nematic mixture becomes biaxial. We have
not observed smectic phases in the explored temperature
range.
The structural changes taking place in the nematic

phase upon mixing have been assessed by computing the
radial pair correlation function which is de�ned as

g0(r) = 〈δ(r − r12)〉12/(4π2ρ), (10)

where the angular brackets 〈. . .〉12 stand for an en-
semble average. Here, we concentrate on the results at
T ∗ = 1.8 where the three systems have similar 〈R2

00〉
but quite di�erent 〈R2

22〉 order parameters. We see from
the plot of Figure 4 that the disc�disc pairs have quali-
tatively similar radial pair correlation functions both in
the single�component and the equimolar mixture systems
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Fig. 4 Radial correlation functions for the rod�rod and

disc�disc pairs in the two single�component and the

equimolar mixture samples at dimensionless temperature

T ∗ = 1.8

(even though one is a uniaxial while the other is a biaxial
nematic). The same is not true for the elongated rod�
rod pairs which have a typical highly ordered smectic�like
radial pair correlation function in the single�component
system, but one quite similar to the disc�like particles in
the equimolar mixture. This result shows that even from
the structural point of view the duality arising from the
interaction biaxiality of the rod�like particles takes over
the shape biaxiality in this mixed system.

[A] [B] [C]

Fig. 5 Snapshots of three systems of biaxial GB ellipsoids

at dimensionless temperature T ∗ = 1.8: (plate A) lateral
view, along the m director, of the single�component Sb

system formed by the rod�like particles; (plate B) top view,

along the n director, of the single�component N system

formed by the disc�like particles; and (plate C) top view,

along the n director, of the single�component N system

formed by the disc�like particles

To summarise, the typical features of the low tempera-
ture organisations of the three families of samples can be
caught from the snapshots of Figure 5. At T ∗ = 1.8 the
single�component rod�like sample gives rise to an orthog-
onal biaxial smectic phase, similarly to what has been ob-
served for the ellipsoids with same shape but stronger in-
teractions of ref. 47 (even though at higher temperatures).

The single�component disc�like samples remain instead
in a uniaxial discotic nematic organisation even at very
low temperatures and high 〈R2

00〉 order parameter (Fig-
ure 5�B), and do not form any columnar phase 57. The
equimolar mixture does not phase�separate and forms a
Nb at the lowest temperatures.

There is an interesting change of mesogenic behaviour
in the rod�like ellipsoids in the mixture. While in the
single�component states the rods align preferentially with
respect to their long axis (Figure 5�A), in the rod�disc
mixture it is the short axis which has the strongest ten-
dency to align and provides the highest degree of orien-
tational ordering (Figure 5�C). In this respect, the elon-
gated ellipsoids (because of their dual nature arising from
the biaxiality of attractions) behave as squashed ones in
the equimolar mixture. This is not what happens in the
single�component system where it is the shape biaxial-
ity which mostly determines the kind of molecular align-
ment, and the attractive potential only disfavours layered
organisations.

As suggested by Chandrasekhar 65,66 one path-
way towards biaxial nematics (either one� or multi�
components) involves �. . . preparing a mesogen that com-

bines the features of the rod and the disc� . However, spe-
ci�c design hints for building up dual behaviour were,
and still are, not obvious to come by. Our computer sim-
ulations show how duality can be practically attained in
several ways: matching molecular dimensions; duality in
interaction via competing contributions giving side�by�

side interactions stronger than face�to�face ; and hetero-
geneous attractions comparable to homogeneous ones.

The suggestion about weakening face�to�face interac-
tions may be the most di�cult to come by. It could
be realised with electrostatic repulsions between charges
of the same sign 67 to counterbalance the attractive po-
larisation interactions which are usually stronger when
two broad shaped molecules stack face�to�face. The en-
hanced heterogeneous attractions and the negative inter-
action biaxialities might be achieved with speci�c weak
interactions, like hydrogen bonding between complemen-
tary lateral groups 33,34.

There is a last mechanism which may be useful for the
experimental realisation of Nb systems: duality in shape
may be sustained by a certain degree of conformational
�exibility68�70 and/or shape polydispersity 20,42 (which
are not accounted for in our simple rigid model). For
instance, the mesogenic behaviour of the very �exible
silicon tetrapodes of Mehl and co�workers 10 may arise
from a rod�disc shape interconversion process 68�70, pro-
viding a distribution of e�ective shapes resembling that
of a polydispersed sample.
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5 Conclusions

We have shown by MD computer simulations of
attractive�repulsive biaxial ellipsoids that the transition
temperature of Nb organisations can be lowered by mix-
ing a biaxial nematic with a discotic one. The N�Nb

transition temperature is ≈ 20% lower than that of
the pure calamitic mesogen. The suppression of layered
and/or stacked structures, and the miscibility over a wide
temperature range encompassing isotropic and nematic
phases is obtained by designing rod� and disc�like parti-
cles with a dual calamitic�discotic nature.
In view of suggesting practical guidelines to synthetic

chemists we believe the most challenging design e�ort
might be the synthesis of a disc�like mesogen with very
broad and low�temperature discotic nematic range. How-
ever, the speci�c mesogenic dual nature of these elon-
gated and squashed mesogens may be obtained with pe-
ripheral groups giving both weak anisotropic interactions
between the sides (especially but not exclusively for the
heterogeneous rod�disc pairs), and at the same time dis-
favouring the face�to�face stacking by means of electro-
static repulsions between opposite charges on the disc
plane.
The possibility of obtaining biaxial nematic mixtures

at room temperature and with a wide stability range
might be useful in view of technological applications of
these materials towards fast�switching molecular devices.
To this end, tuning the mesogenic behaviour of already
known compounds by chemical modi�cation to match the
properties required to stabilise a low�temperature biax-
ial nematic mixture may be relatively easier than de-
vising new classes of weakly�associating complementary
molecules.
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Appendix

The computation of sample�wide (global) orientational
order parameters in a multi�component sample can be
performed by extending the standard single�specie pro-
tocol based on ordering matrices 47,58 and considering all
possible outcomes based on the symmetry of the vari-
ous species, and the mutual orientations of the single�
constituent molecules ordering frames. However, taking
into account all these cases is quite involved, so we de-
scribe here a simpli�ed algorithm suited for mixtures of
biaxial ellipsoids, postponing a more detailed discussion

Fig. A�1 Flowchart of the simpli�ed algorithm used to

compute global order parameters for a uniform

multi�component sample of biaxial particles

to a paper specially devoted to it. This procedure re-
lies on the assumption of the sample being a uniform
monodomain (which for all our samples was checked by
visual inspection). However, it can readily extended to
the computation of local order parameters in a large and
possibly non�uniform system (e.g. due to phase separa-
tion, or the formation of local clusters, or a non�uniform
director �eld) once a decomposition into a set of regions is
available for the local mapping of single�species number
densities.

The algorithm proposed for evaluating global order pa-
rameters in a MD, or Monte Carlo, con�guration of biax-
ial ellipsoids (see the �owchart A�1) consists of a two�step
procedure. To begin with, the single�species x, y, and z
ordering matrices On,α = (1/Nα)

∑
i ni,α ⊗ ni,α are cal-

culated for each molecular axis (i.e. every n = x, y, and
z axes ni,α for the i = 1, . . . , Nα particles of species α).
The total number of such ordering matrices On,α is 3Ns,
where Ns is the number of species. Then these matri-
ces are simultaneously diagonalised and the existence of
a common eigenvector frame is probed. Next, if this test
was successful the second step involves the computation
of three global ordering matrices, followed by their simul-
taneous diagonalisation, and eventually the estimation of
global order parameters. This latter approach is equiva-
lent to that of determining the principal axes of a suitable
anisotropic macroscopic observable (e.g. the refractive
index) for the whole sample. If the overall director �eld
is truly biaxial all these 3Ns ordering matrices do com-
mute and share the same eigenvectors. However, either
because the species have di�erent local director frames,
or simply because the symmetries of the orientational dis-
tributions of molecular axes are not exactly D2h (e.g. due

1–11 | 7

Page 8 of 12Soft Matter



to �uctuations, or the formation of local cybotactic clus-
ters71) the ordering matrices On,α may not exactly com-
mute (notice that this can also occur in a single�species
system). In the former case global order parameters as
such are meaningless, while the latter case still allows to
de�ne them provided the ordering matrices nearly com-
mute, i.e. if an orthogonal transformation to nearly di-
agonal form72,73 for all On,α exists. In particular, this is
accomplished as a weighted simultaneous diagonalisation
where the ordering matrices for each species concur to the
global eigenvectors proportionally to the corresponding
mole fraction. A convergence criterion based on the root
mean square o��diagonal elements of the nearly diago-
nal matrices provides a suitable threshold (here we used
a value of 0.05) for testing this. The orthogonal trans-
formation to nearly diagonal form identi�es three candi-
date global eigenvectors. However, before using them as
director frame axes these eigenvectors have to be prop-
erly labelled, since for each permutation of the mutually
orthogonal n, m, and l axes a di�erent set of single�
species order parameters can be computed (a rotation
of the director frame allows the transformation from one
set to the other). This is also true for the permutations
of the molecular axes labels since the directions of pref-
erential alignment can change upon transition from one
phase to another (e.g. as we have seen here for the elon-
gated biaxial ellipsoids). In this context, proper stands
for the permutation which provides the most physically
meaningful 〈R2

mn〉 set for each specie 58. For instance,
the (wrong) assignment of swapped m, and n axes re-
sults in deceivingly high 〈R2

22〉 and rather small 〈R2
00〉.

In practice, a convenient criterion is that of selecting the
permutations giving the highest values of 〈R2

00〉, and the
smallest positive values of 〈R2

22〉. The �rst part of this
prescription is consistent with the standard algorithm for
the computation of order parameters 59, while the second
part prevents a biased overestimation of phase biaxial-
ity. Several strategies may be adopted at this stage. The
simplest one when studying mixtures of biaxial particles
consists in checking if a common permutation exists, i.e.
all z molecular axes are aligned along the same eigen-
vector (and, for biaxial organisations, also for the x and
y axes), then it is possible to compute three global or-
dering matrices where, again, the contribution for each
species is weighted according to the corresponding mole
fraction. Finally, these three matrices can simultaneously
be brought to nearly diagonal form, and a set of global
order parameters can be de�ned (and computed from the
eigenvalues as usual). If a common label permutation
does not exist, i.e the x, y, and z molecular axes for
each species are on average aligned with respect to di�er-
ent permutations of the eigenvectors (e.g. as expected for

a biaxial mixture of uniaxial rods and discs, as is the case
in ref.41), it is possible to estimate a set of global order
parameters choosing as principal director n the eigenvec-
tor corresponding to the highest single�species 〈R2

00〉, and
then select the transversal directors m, and l to achieve
the lowest biaxiality state (notice that for simplicity this
has not been represented in the �owchart A�1).
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Table 1 Average orientational order parameters 〈R2
00〉, and 〈R2

22〉, dimensionless potential energy per particle 〈U∗〉, and
number density 〈ρ∗〉 for the MD simulations of the system N = 4096 biaxial rod�like GB ellipsoids giving isotropic ( I),
nematic (N), biaxial nematic (Nb), and biaxial smectic ( Sb) phases as indicated. Estimated rms errors on the block averages

are also given

T ∗ 〈R2
00〉 〈R2

22〉 〈U∗〉 〈ρ∗〉 phase

1.6 0.973± 0.000 0.474± 0.000 −12.763± 0.004 0.3689± 0.0001 Sb

1.7 0.967± 0.000 0.469± 0.000 −12.278± 0.003 0.3646± 0.0000 Sb

1.8 0.964± 0.001 0.468± 0.002 −11.899± 0.062 0.3613± 0.0005 Sb

1.9 0.959± 0.001 0.466± 0.001 −11.453± 0.072 0.3570± 0.0005 Sb

2.0 0.903± 0.000 0.362± 0.001 −7.927± 0.005 0.3335± 0.0000 Sb

2.1 0.834± 0.001 0.300± 0.003 −6.185± 0.024 0.3222± 0.0001 Nb

2.2 0.789± 0.001 0.241± 0.002 −5.334± 0.002 0.3144± 0.0000 Nb

2.3 0.748± 0.002 0.114± 0.041 −4.616± 0.057 0.3069± 0.0005 Nb

2.4 0.701± 0.002 0.033± 0.007 −4.079± 0.015 0.3008± 0.0001 N
2.5 0.638± 0.004 0.030± 0.003 −3.627± 0.008 0.2952± 0.0001 N
2.6 0.558± 0.006 0.021± 0.001 −3.190± 0.013 0.2897± 0.0001 N
2.7 0.413± 0.011 0.019± 0.002 −2.678± 0.022 0.2835± 0.0002 N
2.8 0.088± 0.015 0.009± 0.001 −2.105± 0.011 0.2767± 0.0001 I
2.9 0.064± 0.003 0.008± 0.000 −1.927± 0.001 0.2733± 0.0000 I
3.0 0.054± 0.002 0.006± 0.000 −1.786± 0.002 0.2704± 0.0000 I
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Table 2 Average orientational order parameters 〈R2
00〉, and 〈R2

22〉, dimensionless potential energy per particle 〈U∗〉, and
number density 〈ρ∗〉 for the MD simulations of the system of N = 4096 biaxial disc�like GB ellipsoids giving isotropic ( I), and
uniaxial nematic (N) phases as indicated. Estimated rms errors on the block averages are also given

T ∗ 〈R2
00〉 〈R2

22〉 〈U∗〉 〈ρ∗〉 phase

1.6 0.932± 0.000 0.021± 0.002 −13.009± 0.001 0.5216± 0.0000 N
1.7 0.923± 0.000 0.019± 0.002 −12.391± 0.008 0.5134± 0.0001 N
1.8 0.911± 0.000 0.013± 0.001 −11.772± 0.002 0.5051± 0.0000 N
1.9 0.898± 0.001 0.013± 0.001 −11.168± 0.002 0.4969± 0.0000 N
2.0 0.882± 0.001 0.011± 0.000 −10.569± 0.008 0.4887± 0.0001 N
2.1 0.863± 0.001 0.011± 0.000 −9.966± 0.008 0.4805± 0.0001 N
2.2 0.839± 0.000 0.010± 0.000 −9.336± 0.002 0.4720± 0.0000 N
2.3 0.807± 0.000 0.009± 0.000 −8.675± 0.004 0.4632± 0.0001 N
2.4 0.765± 0.001 0.009± 0.000 −7.967± 0.006 0.4540± 0.0001 N
2.5 0.695± 0.003 0.008± 0.000 −7.117± 0.009 0.4434± 0.0001 N
2.6 0.564± 0.007 0.007± 0.000 −5.992± 0.032 0.4303± 0.0003 N
2.7 0.049± 0.005 0.004± 0.000 −4.185± 0.002 0.4107± 0.0000 I
2.8 0.039± 0.002 0.004± 0.000 −3.949± 0.005 0.4053± 0.0000 I
2.9 0.034± 0.001 0.004± 0.000 −3.754± 0.004 0.4003± 0.0000 I
3.0 0.031± 0.001 0.004± 0.000 −3.591± 0.002 0.3957± 0.0000 I

Table 3 Average orientational order parameters 〈R2
00〉, and 〈R2

22〉, dimensionless potential energy per particle 〈U∗〉, and
number density 〈ρ∗〉 for the MD simulations of the equimolar mixture of N = 2048 prolate and N = 2048 oblate biaxial GB

ellipsoids giving isotropic ( I), nematic (N), and biaxial nematic ( Nb) phases as indicated. Estimated rms errors on the block

averages are also given

T ∗ 〈R2
00〉 〈R2

22〉 〈U∗〉 〈ρ∗〉 phase

1.6 0.918± 0.000 0.340± 0.001 −12.820± 0.003 0.4214± 0.0000 Nb

1.7 0.907± 0.001 0.295± 0.002 −11.938± 0.005 0.4133± 0.0000 Nb

1.8 0.894± 0.001 0.239± 0.004 −11.110± 0.014 0.4053± 0.0001 Nb

1.9 0.877± 0.001 0.066± 0.014 −10.203± 0.011 0.3964± 0.0001 N
2.0 0.861± 0.001 0.030± 0.008 −9.603± 0.005 0.3898± 0.0000 N
2.1 0.842± 0.001 0.019± 0.006 −9.056± 0.008 0.3834± 0.0001 N
2.2 0.818± 0.003 0.019± 0.002 −8.527± 0.009 0.3772± 0.0001 N
2.3 0.791± 0.001 0.017± 0.001 −8.006± 0.008 0.3710± 0.0001 N
2.4 0.759± 0.001 0.013± 0.001 −7.468± 0.006 0.3647± 0.0001 N
2.5 0.712± 0.002 0.013± 0.002 −6.907± 0.008 0.3580± 0.0001 N
2.6 0.654± 0.005 0.013± 0.001 −6.324± 0.017 0.3512± 0.0001 N
2.7 0.564± 0.007 0.011± 0.001 −5.667± 0.015 0.3436± 0.0001 N
2.8 0.345± 0.028 0.010± 0.001 −4.736± 0.053 0.3337± 0.0004 I
2.9 0.070± 0.017 0.006± 0.001 −4.098± 0.010 0.3261± 0.0001 I
3.0 0.031± 0.005 0.003± 0.000 −3.876± 0.006 0.3221± 0.0000 I
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