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The biaxial nematic phase diagram for the second rank Straley quadrupolar pair potential, as explored until now, implies that a
direct transition from a biaxial nematic to an isotropic phase can occur, either at a single Landau point or even, as recently shown
using mean field theory, along a line. We show by an extensive Monte Carlo investigation that a different topology can be found
in a wide region of parameter space, with the passage from biaxial to isotropic always going through a uniaxial phase. We argue
that this may hint in part of the difficulty in realising a biaxial nematic phase.

1 Introduction

Biaxial nematic (Nb), fluids that possess two orthogonal pre-
ferred directions (directors) rather than the single one of stan-
dard nematics, have attracted considerable theoretical1–7 and
experimental8–13 attention14,15 ever since their existence was
predicted over 30 years ago by Freiser1 for a fluid of biax-
ial particles interacting with a quadrupolar like potential. As
real mesogenic molecules are non cylindrically symmetric, it
would seem natural to expect to find this lower symmetry bi-
axial nematic phase as well as the standard uniaxial (Nu) one.
On the contrary the existence of the phase has been demon-
strated in lyotropics16 and in polymer liquid crystals17,18, but
has proved to be extremely elusive on low molar mass ther-
motropics and has defied experimental attempts at preparing
it either in pure mesogens or mixtures19–21 (see22 for a re-
cent review) until recently, when its observation in bow shaped
mesogens8,9,13, and other families of compounds10,12, has im-
mediately given rise to a burst of theoretical and experimen-
tal activity in a variety of materials11,22–24. The reasons for
this interest are both of fundamental and technological na-
ture. The first and more profound is the challenge to under-
stand why a phase that was predicted by Mean Field (MF) the-
ory1,25, computer simulations of lattice26,27, off–lattice mod-
els of the hard–repulsive28 and of the attractive–repulsive
kind29 in pure mesogens, and recently in mixtures of uniaxial
rods and discs30, is so difficult to realize in practice. The sec-
ond deals with the prospect of novel and faster electro-optical
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devices that can be obtained through a control of the secondary
director axis31. The two aspects are strictly correlated, given
that the current biaxial nematics are hardly suitable for practi-
cal applications because of their material features (high tran-
sition temperatures, viscosities etc.) and because attempts at
tweaking the molecular structure32 are likely to fail in the ab-
sence of at least a general knowledge of the phase diagram.

The layout of the paper is the following: after this Introduc-
tion, a Modelling Section describes the biaxial pair potential
used to compute the energy between neighbouring spins in a
cubic lattice; the Monte Carlo simulations gives the technical
details of our calculations; the Results and discussion Section
provides the outcomes of the Monte Carlo simulations and in
particular the phase diagram; the Conclusions Section sum-
marises the results.

2 Modelling

Here we wish to provide the general phase diagram mentioned
in the Introduction and we start from the most general purely
orientational pair potential between two rigid particles with
biaxial D2h symmetry, that has been put forward by Straley2

and recently revisited, see e.g.3,33. This can be obtained in a
general way as a result of averaging the full pair potential, de-
pendent on the intermolecular vector rij and on the position–
orientations of the two particles, ri, ωi, rj , ωj , over the dis-
tribution of rij 26,34. For a cubic lattice with nearest neighbor
interactions, as assumed here, the average gives
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Fig. 1 Phase diagram of the order–disorder transition: reduced
temperatures T ∗ versus the biaxial parameters Γ, and Λ of Eq. 3 as
obtained from MC simulations on a 20× 20× 20 lattice. The two
surfaces denote the transitions from an isotropic (I) to uniaxial
nematic (Nu) phase (pale yellow surface, with superimposed red
lines), and from Nu to biaxial nematic (Nb) (pale green surface, with
superimposed black lines). The T ∗ points at constant Γ values have
been interpolated and the resulting two sets of red and black lines
have been plotted as guides to the eye for a better appreciation of the
Nu gap separating the Nb and I phases at high Γ values (see text).
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The R2
m,n are functions of the relative rotation angles from

i to j 35, i.e. ωij ≡ (αij , βij , γij),27. The model reduces to
the well known uniaxial Lebwohl–Lasher potential36–38 when
u220 = u222 = 0. In the notation introduced by Romano39,
as well as Virga and coworkers40, that we shall use in what
follows, the previous equation becomes

Uij = ε {−G33+Γ (G11 −G22)

−Λ [2(G11 +G22)−G33]}, (3)

where Gmn ≡ P2(uim · ujn) and uim, with m = 1, 2,
3, is the triplet of orthogonal unit vectors representing the
axis system of particle i. By comparison ε = −u200, Γ =√

(8/3)(u220/u200), and Λ = (2/3)(u222/u200). We notice
that the potential in Eq. 1 can be considered as the second rank
contribution in a more general expansion over Wigner rotation
matrices of rank L. As such the coefficients u2mn, and con-
sequently Γ, Λ, do not have a simple physical identification in
terms of single molecule properties, as it would be desirable.
In general, since u200 can be used to define a reduced temper-
ature T ∗ ≡ −kBT/u200, the potential in Eq. 3 depends on the
parameters Γ, Λ that define a two dimensional space.

There are however a few cases studied, e.g. when disper-
sion interactions are assumed and an average over intermolec-
ular separations is performed26, in which the interaction coef-
ficients could be written as u2mn = kijα

2mα2n, where α2p

are the spherical components of the molecular polarizability
tensor and kij a constant26, so that u222/u200 = (u220/u200)

2

or Λ = Γ2/4. This special case has been widely studied by
Monte Carlo (MC) simulations27,41,42 and for this Hamilto-
nian, even if MF overestimates the transition temperatures,
the topology of the phase diagrams obtained from MC simula-
tions and MF models is the same, with a Landau point where
a direct transition from Nb to isotropic (I) phase takes place.
Simple models based on excluded volume or on an interaction
proportional to the exposed surface in different directions, that
allow to work out Γ, Λ from the length L, breadthB, widthW
of brick–like molecules have been put forward by Straley2 and
by Ferrarini et al.43 and correspond to a subspace of (Γ,Λ)
space. A phase diagram was obtained for a specific choice
of parameters, i.e. Γ = 03. Virga, Romano and coworkers
showed that in this case a coexistence line between Nb and I
phases is obtained, and these findings were confirmed by MC
at selected state points39,40,44. For this subset of parameters a
biaxial phase should be the first one observed on cooling down
from the isotropic, hence it should be relatively easy to find,
contrary to experimental evidence.

More recently, Virga and coworkers5,40 have analyzed the
general Hamiltonian in Eq. 3. They have shown that the po-
tential yields a stable minimum for calamitic states (parallel
side by side blocks) only within a certain fan–shaped region
of parameter space defined by Λ − |Γ| + 1 > 0. However,
the key questions of topology of the phase diagram and of the
sequence in which the various phases occur on cooling from
the isotropic are still unanswered. The aim of the present letter
is thus to present a detailed MC investigation45 of the general
Straley biaxial Hamiltonian Eq. 32,3,33 and to obtain its phase
diagram.
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Fig. 2 Sections of the biaxial phase diagram for Γ = 0 (plate [a]),
0.2 (plate [b]), 0.4 ≈ 1/

√
6 (plate [c]), and 0.6 (plate [d]) values of

the phase diagram of Fig. 1 giving the transition temperatures T ∗ as
a function of the Λ parameter of Eq. 3. The green points in plate [a]
with Γ = 0 have been taken from Refs. 40,44

3 Monte Carlo simulations

We have considered a 20 × 20 × 20 simple cubic lattice with
periodic boundary conditions of biaxial particles interacting
through the nearest neighbor version of the potential in Eq. 3
and performed MC simulations over a 10×10 regularly spaced
grid of (Γi,Λj) values, with 0 ≤ Γi ≤ 1, ∆Γ = 0.1 and
0 ≤ Λj ≤ 1, ∆Λ = 0.1. Simulations have been started
from random particle orientations at dimensionless tempera-
ture T ∗ = 4 and, for every (Γi,Λj) pair, a sequence of 100
temperature cooling–down scans was performed until the final
T ∗ = 0.04 was attained. Orientations were updated choos-
ing one of the three axis at random and using the Barker–
Watts46 method on each attempted Monte Carlo move. Every
sample was first equilibrated for 250, 000 MC sweeps starting
from the final configuration of the previous temperature point,
then equilibrium averages have been computed over at least
250, 000 additional MC sweeps. Besides the relevant thermo-
dynamic observables (e.g. average potential energy, and spe-
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Fig. 3 Temperature dependence of the average 〈R2
0,0〉 (plate [a])

and 〈R2
2,2〉 (plate [b]) order parameters from MC simulations at the

indicated Λ values and constant Γ = 0.6. Symbols have been drawn
every two MC data points

cific heat), we have computed a full set of second rank order
parameters 〈R2

0,0〉, 〈R2
2,0〉, 〈R2

0,2〉, and 〈R2
2,2〉, i.e. S,

√
3/2T ,

S′/
√

6, T ′/247 or S, P/
√

2, U/
√

2, F/248 using the algo-
rithm outlined in Refs.27,42.

The transition temperatures T ∗ have been estimated from
the position of the maxima in the specific heat capacity ob-
tained in turn from mean square energy fluctuations.

4 Results and discussion

Our main result is the overall phase diagram presented in
Fig. 1 where the two surfaces enveloping the transition tem-
peratures T ∗ from I to Nu, and from Nu to Nb respectively
are represented with superimposed thick lines as guides for the
eye. In addition, to highlight the most relevant features of this
phase diagram four sections at constant Γ = 0, 0.2, 0.4, and
0.6 values are shown in Fig. 2. The plots of Figs. 1–2 reveal
that for the smaller values of Γ there is a wide Λ range where,
upon cooling, the system goes directly from isotropic to biax-
ial nematic phase (see Fig. 2–(a)). In particular, for the case
Γ = 0, we confirm the findings of Romano39 of a triple point
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at Λ = 0.26, and a line of I–Nb transitions up to Λ = 1. As Γ
increases the triple point at Λ = 0.26 gradually shifts towards
lower values. This corresponds to the appearance of a second
triple point which regularly shifts downwards from the initial
Λ = 1 value for Γ = 0 (see Fig. 2–[b]) as Γ increases. The line
through the triple points connects two wedge–shaped regions
of uniaxial “calamitic nematic” (so–called N+), obtained in
the dispersive model for 0 ≤ Λ < 1/

√
6, and “discotic ne-

matic” (so–called N−), obtained in the dispersive model for
1/
√

6 < Λ ≤ 1, phases bracketing a central Λ range charac-
terized by direct I–Nb transition.

All systems with Λ = 0 have been found to form only uni-
axial nematics. Conversely, Nb is always observed whenever
Λ > 0. This behavior originates from the role Λ has in Eq. 3
influencing the weight of the terms coupling the orientations
of the transversal axes (and thus phase biaxiality).

For Γ ≈ 0.4 the connecting line shrinks to essentially a
point, similarly to the dispersive case27. For Γ > 0.4 the
two phase boundary lines depart and a direct transition from
I to Nb phase is no longer possible. More in detail we see
from Figs. 1–2 that the effect of increasing Γ (at constant Λ)
is that of lowering TNb

. So, if we take Γ = 0.4 ≈ 1/
√

6
as a reference, an increase of Γ results in stabilizing Nu and
destabilizing Nb, while any molecular interaction mechanism
giving Γ < 0.4 should provide a substantial increase of the
temperature stability for the Nb phase.

The location of the transitions is also supported by the tem-
peratures variations of the most relevant order parameters27

〈R2
0,0〉 and 〈R2

2,2〉 plotted in Fig. 3. In particular, 〈R2
0,0〉 and

〈R2
2,2〉 are both non zero in the Nb phase, while in the uniaxial

nematic phase only 〈R2
0,0〉 > 0 while 〈R2

2,2〉 < 0.05. In the
isotropic phase both order parameters vanish.

We observe that in our exploration of the biaxial phase di-
agram we have not found instances of order parameters with
magnitude in the unusual sequence previously reported10, thus
confirming also for this study the earlier results5.

In real, or at least off–lattice, systems biaxial nematic com-
petes for existence with smectic and crystalline phases29,
which are typically estimated to take place in a temperature
range of some 10% from the isotropic transition tempera-
ture43. Thus emergence of nematic phase biaxiality is much
more difficult in practice than what is predicted by lattice mod-
els and has to take place in a rather narrow temperature range
below the transition to isotropic phase. As a consequence, as
we see from Fig. 2 for large Γ a biaxial nematic not contigu-
ous to the isotropic, but instead lying well below the uniaxial
phase is unlikely to be observed. This can be connected with
the fact that upon increasing Γ there is a change in the pair po-
tential in Eq. 3 from maximum to minimum around the point
where the angles αij , βij between the x and the z axes re-
spectively of the two molecules are αij = 0◦, βij = 90◦.
Then it becomes a saddle point, indicating that for high Γ the

face–to–face configuration is relatively destabilized when the
two molecules happen to be nearly perpendicular, a situation
more likely to arise when the system is close to being isotropic
phase.

5 Conclusions

In summary, we have shown that over a wide range of pa-
rameters the molecular organization obtained on cooling from
the isotropic is a uniaxial nematic, while the biaxial phase is
confined to low temperatures where realistic systems proba-
bly would become smectic or crystals. This is a rather more
pessimistic view than that provided by the extended isotropic–
biaxial nematic transition line found in39,40,44, but one which
seems consistent with the persistent difficulty in finding biax-
ial nematics. Even though our results are based on a simple
model dealing only with orientational properties we believe
the topology of the phase diagram should be quite general and
useful for comparing and understanding the results of real ex-
periments. This has proved true in the past for even simpler
purely orientational models3,27 used by experimentalists (see
e.g.10,32). Going from general consideration to specific cases,
it is worth remarking that it is not easy instead to establish a
simple connection between the potential parameters u2mn and
molecular properties since, in general the second rank part of
the potential is just a term in the expansion of a realistic po-
tential. Even the simple repulsive, surface or dispersive in-
teractions already mentioned2,27,43 can operate and contribute
concurrently to the second rank potential. Indeed a combi-
nation of biaxial attractive and repulsive interactions of op-
posite sign was found important in obtaining biaxial nematic
phases of generalized Gay-Berne mesogens29. A connection
between molecular structures and potential coefficients can
however be established, as recently shown by Gorkunov et
al.49 for molecules as complex as biaxial tetrapods10,12, start-
ing from a detailed molecular potential with a certain physi-
cal origin and expanding it in a multipolar series, that is then
truncated at rank L = 2. Using a slightly different formu-
lation from49, i.e. assigning an approximate pair distribu-
tion exp[−UGBij (rij , ω1, ω2, ωr)/ε0] (implicitly at unit tem-
perature since we are mostly interested in the trend of the ex-
pansion coefficients), we can write uLmn(rij) as

uLmn(rij) =
1

C

∫
RLm,n(ω2)UGBij (rij , ω1, ω2, ωr)

× e−U
GB/ε0dω2 dωr, (4)

where C = 32π3 is the normalisation factor. Instead
of integrating with respect to the particle–particle ω12 =
(α12, β12, γ12), we have placed the first molecule in the ref-
erence frame centre with fixed ω1 = (0, 0, 0) orientation, and
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allowed the second particle to span all remaining orientational
degrees of freedom ω2 = (α2, β2, γ2), and ωr = (αr, βr).
The integrals have been evaluated using a five–dimensional
gridding of the entire ω2, ωr domain using 32 evenly spaced
points for each variable (test calculations using 645 evenly
spaced points confirm these values). In particular, we have
used three approaches for the computation of the integrals:
(a) all UGB values larger than 10 ε0 have been flattened, i.e.
UGB = min[UGB , 10 ε0]; (b) all UGB ≥ 10 ε0 points have
been set to 0 ε0; (c) all UGB ≥ 0 ε0 have been set to 0 ε0
as in reference49. The three approaches for dealing with the
positive branch of the UGB surface practically give the same
results. Notice that while this procedure allows to obtain Stra-
ley coefficients Γ, Λ from a biaxial GB potential, the inverse
problem of finding a GB parameterisation from Γ, Λ is clearly
undetermined.

For instance, in the case of the biaxial Gay-Berne poten-
tial50,51 with the parameterization that has been shown to lead
to a biaxial nematic29,31 the second rank expansion coeffi-
cients obtained with this procedure, assuming rij > rs, where
rs is of the order of a molecular length give Γ ≈ 0.092,
Λ ≈ 0.24. It is interesting to see that in this case the simu-
lations show the phase sequence isotropic, uniaxial nematic,
biaxial nematic as expected from the phase diagram in Fig. 1.
Even though computer simulations need to be used for a def-
inite prediction, we believe that this type of approach might
help in the rational design32 of real biaxial mesogens, identify-
ing favourable parameter ranges leading to the desired region
of the general phase diagram reported here.
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