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Roto-translational diffusion of biaxial probes in uniaxial liquid
crystal phases
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We discuss the problem of roto-translational diffusion of a rigid biaxial molecule dissolved in a
uniaxial smectic liquid crystal phase. We examine distorted rod and disklike molecules and show
how biaxiality and roto-translational coupling can produce significant effects on some of the
correlation functions and spectral densities most useful in analyzing experimental observables.
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I. INTRODUCTION a smecticA has, like that of a nematic, uniaxial symmetry,
even if the constituent molecules are themselves biaxial. The
The description of molecular motions in liquid crystals is simultaneous treatment of rotation and translation, needed in
a subject of great importance both in its own right and as garticular where roto-translational coupling exists, has been
tool for the interpretation of a variety of experimental comparatively less treated. Thus the case of uniaxial mol-
results:~® The problem has been treated in detail, as far agcules moving in a uniaxial smecticphase has been treated
reorientation is concerned, assuming that the motion is difby Moro and Nordié® and some applications to the analysis
fusional and that it takes place in an effeCt(\‘/molecular”) of experimenta| data have appea?éa?but to the best of our
field potential describing the overall effect of the anisotropicknov\,k_mge the case, important in all practical applications of
solvent on the particle whose evolution is followed. Thethe rototranslation of less symmetric, biaxial, molecules has
treatment has been pioneered by Noreioal* who dealt never been tackled. Here we wish to provide such a treat-
with uniaxial molecules reorienting in a uniaxial solvent but yent for uniaxial mesophases. We shall discuss the problem
more recently a generalization to molecules of arbitrary symi general first, considering the rototranslational evolution
metry reorienting in a uniaxidbr biaxial phase has been put equation and its solution, that we shall provide employing a
forward® A variety of experimental observables for biaxial gjitaple matrix representation of the diffusion operator.
moleculles dissolved in liquid crystals, ranging from nuclearg;en the variety of experiments potentially sensitive to
magnetic resonarce spectral de_ns?ﬁ%m fluorescence po-  |tational—translational effects, and the fact that all of these
larized intensities? have been interpreted using this ap- 516 sensitive to roto-translational correlation functions, we

proach, allowing the determination of the molecular rota-p,ye chosen to concentrate on the calculation of these quan-

tional diffusion tensor components. o __tities and on the examination of the effect of coupling on
Similar problems arising in the reorientational Kinetics yair pehavior. We shall treat explicitly some typical cases

of monodomain supermagnetic particles in external applieyo, tor elongated and flat biaxial molecules and examine

fields have r.ecently b(_een !ndgpgndently tackfed. how the correlation functions needed to interpret various ex-
Translational motion in liquid crystals has also beenperimental data are modified by the onset of roto-
experimentally*~**and theoreticali’*'studied assuming a - -0 coupling

diffusional evolution. As far as translational dynamics is

concerned, a liquid crystal behaves to a first approximation

as an ordinary liquid in the nematic, where no long-range

positional order exists, but not in a smectic phase, where

molecules are instead distributed with their centers of masg tHeoRy

being positioned, on average, on layers. It is worth noting

that although in an idealized picture a smectic is representefy: Description of the biaxial potential

as a collection of two-dimensional layers, molecules can ac- e consider a uniformly aligned smectcwith layers
tually migrate between layers. Accordingly, it can be as-perpendicular to the laboratogyaxis and layers spacing
sumed that in a smectic translational motion takes place in &he molecular field potential acting on a biaxial probe par-
molecular field corresponding to a periodic density distribu-tjcle with positionz and orientationw in this liquid crystal

tion V‘{ith a higher probability of finding molecules in yhase has the same angular symmetry and spatial periodicity

layers'®1® At the same time the orientational distribution in of the phase and may, in principle, be expanded in a product
basis set of WigneDy, ,(»)*® and harmonic, cosine, func-
dE|ectronic mail: vz3bod72@sirio.cineca.it tions:
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U(w,2) L L 27z operator written in the molecular fragt@ndDg, Dy, DgT,
T 2 Ut n;p(Don(@)+Dg,n(w))cOS—5=P, D+, represent rotational, translational and coupled diffusion
(1)  tensors. The matriR is the rotation matrix relative to the
transformation form molecular to laboratory fraffe.
Examining the evolution equatiofEq. (4)] we notice

wherekg is the Boltzmann constant, is the temperaturay

23
stands fgr the set .Of three Euler angless,y™ and only that the coupling between rotational and translational diffu-
m=0 Wigner matrices are employed here because of thgions is due to the following three sources:

assumed uniaxiality of the phase. It is important to note that (1) Presence of terms that couple positional and angular

only terms withL,n even need to be retained as a COnse'degrees of freedom in the mean field potential. These terms

guence of the fact that we assume to treat biaxial probe mol‘,;‘re for instance of the tvpB: cos (2r/d kz similar to
ecules that are invariant for a rotation of 180° about their, YPBrn(w) (2r/d)kz,

e . . . those in the McMillan-typ¥ mean field of potential valid for
principal axis. The coefficients, ., determine the strength | .-, probedsee Eq(3)]
of interaction between the probe particle and its surround- (2) Transformation of the diffusion tensor, as written in

ings. In the particular case that the particle considered is the laboratory frame, due to the rotation of the molecule. In

solute one, they will represent solute—solvent interactionsfact we assume that the diffusion tensor is diagonal in the

NOt'CE als]? that' thz coefgments_,n;p W'tCT L#0,p#0 can- | chosen molecular principal frame but the rotation of the mol-
nqt € actorlze_ and correspon _to a F’OS'“°”a “ecule causes a transformation on the diffusion tensor which
orientational coupling. We shall use this potential for the

| devel A dix H ; will be expressed as amplicit angular dependencef the
general deve op_memsee bpen '>(_ OWEVET, as 1ar as U~y ns)ational motion. This contribution has been discussed,
merical calculations go, we approximate the poteriiale- for instance, by Berne and Pecttaut seems to have been
taining only the first few nonvanishing ordering terms al- '

| d by th fth bl neglected in various other works.
owed by the symmetry of the problem (3) Presence of nonvanishing roto-translational diffusion

U(w,8)= Uz D5 o @)+ Uz d D5 Aw)+D5_5()) coefficients Dgy and Drg) which correlate explicitly the
) rotations around an axi®.g.,z axis) to the translation along
+Ugo,1€OSE+ Upg 1D o @) COSE this or another one. Geometrical considerations lead to the
+Uns (D2 +D2 COSE, 2 conclusion that these terms are important mainly for chiral
221Dy A @) +Dg _,(w))cosé @) molecules, where propeller type effects can be expetfted,
=Uyyd 1— Zsir? B)+uy, 0\/§ sir? B cos 2y and we will not consider their contribution here.
' ' In practice the diffusion tensadd for the nonchiral mol-
+Ugo,1COSE+ Uz i 1— 3siMF B)cosé ecules treated here is assumed to be diagonal in the molecu-
lar principal frame where it takes the forr:=Dgr® D+ .
+ uzz,lé Sir? B cos 2y cosé, ©)) Performing the calculations implied in E@) the diffu-

) _sion operatol” can be written as a sum of two parts contain-
where we have introducegi= (27/d) z and where to obtain  jng only orientational and positional differential operators
this last expression we have used the explicit analytic expres-

sions of the Wigner matricé4.This potential is the imme- I'=Ig+TI75. )

diate generalization of the McMilldft'® smectic potential to  are we consider smectic systems with one-dimensional po-
the case of biaxial prob_es _and it sh(_)uld be mentioned tha_t th&tional order along the direction and to obtain a simpler
_mean-fleld theory of un|aX|aI_smect|c phases formed qf b'ax'expression for the diffusion operat®k, it is convenient to

ial molecules has been studied by Averyanov and Prifiak. (5.0 4 projection of the transition probability over the only

relevant degree of freedom,
B. Roto-translational diffusion equation

The diffusion equation in the presence of a mean-field P(w,Z,t|w0,ZO)=f f P(w,r,t|wg,ro)dxdy. (6)
potentialU(w,z) is giverf®=2py:

Performing this projection operation on both sides of the
ip( folour.t)=(—iL,VTRY) Dr  Drr diffusion equationEqg. (4)] and exchanging derivation and
gt L wotol@ ’ Dir Dt integration we obtain theeduced diffusion operatorshich

do not contain any partial derivatives with respect to xhe

i ( L+ Lul((“’_l’_z)) andy variables.
B
U(w.2) Ir=—Dgr[Li+L(L0)]—Dg[Ly+Ly(Ly0]
R V+V——
( keT ) —Dg[Li+LAL20], (7)
Xp(w01r0|wvr!t) 2 5 2 072 J U
=TP(wg.lolw.r.1), (4 Fr=(DrRis+ D1 Rost DrRsd) 52+ 77 52 ©®

whereP(wg,ro|,r,t) is the conditional transition probabil- wherel/=U(w,£) and R; ; are the elements of the Cartesian
ity of going from position—orientationy,wq at timet=0 to  rotation matrix which will be expressed later in terms of
r,o at the timet, L is the dimensionless angular momentum Wigner matrice$® The roto-translational diffusion operator
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can be symmetrized with a similarity transformation con-the spatial dependencélhe completeness and orthonormal-

structed from the equilibrium distributiofi>1>2

P(w,2,t|®9,20) =P~ YA 0,2)P(w,2,t|wg,20) P g, 20),
)

=P YY0,2)TPYY w,2), (10

where we have used a “hat”
guantity, andP(w,z) is the equilibrium distribution, which
we can write in terms of the mean field potential as:

P(w,z):e* U(w,Z)/kBT/ f e U(w'z)/kBwadZ. (11)

It is convenient to redefine the diffusion coefficients as

2\
p:(DRX+DRy)/21 T\ g (DTX+DTy)/21

WZZDRZ/(DRX+DRy): 77T:2DTZ/(DTX+DT),)’ (12
€=(Dr ~Dg)/(Dr +Dg),
€r=(Dy,~Dr)/(Dr,+Dr ).

It is useful to notice that the coefficients #; are connected

to the axial anisotropy of the probe, while the coefficieats
andeq are related to its biaxiality and will vanish for uniaxial

probes. Performing now the symmetrization 1) gives the
result

I'=p(I'g+puly),
with
Pe=—[V2+ 3(V2)— H(L ULt~ En(L )

+e(HL2 L)+ (L2 + LAY

13

ity of this basis are a direct consequence of those of the two
basis sets employed.

ﬁ(wo,golw,g,w:LmEn Cmnillmnk), (18)

to indicate a symmetrizedWhere we have adopted the Dirac notation to indicate

IL,m,n,K)=Dp, (©) (£

/2L+1DL ( )eikf
= — w)—.
gm? M vd

Inserting expansioi(18) in the diffusion equatior{17) mul-
tiplying both sides fo{L’,m’,n’ ,k’| and using the orthonor-
mality relations an infinite system of linear differential equa-
tions for the expansion coefficients is obtained. In practice
we also assume that an approximate solution of the problem
may be obtained to a certain level of accuracy simply by
truncating the infinite summation in expressi@®) after a
certain, sufficiently large but finite number of terms. With
this hypothesis the solution of the roto-translational equation
is reduced to the solution of a finite system of linear differ-
ential equations

(19

%'C(t):ﬁecm, (20)
whereR has elements
ﬁL,m,n,k;L’,m',n/,k/

=(L’,m’,n’" k'|T|L,m,n,k)

- [ dodepl @O T U@ Dy (@) (2D

— sl(L U2+ (L_t)?])], (14)  The solution can be expressed as an exponential matrix. The
L ) uniaxiality of the liquid crystal phase implies, as already
a 5 2 mentioned, that the mean field potentiflw, &) cannot de-
Ir={ 3@+ EeT(DO'TL D5-2) pend from the first Euler angleag andﬁf(lhis c)auses the re-
ducibility of the diffusion matrix (32), which does not con-
_2_. \p2 (7_2+ 10U E(ﬂ)z (15  tain elements with different values of tmeindices
3( 77T) 0,0 (?52 2 (952 4 [?g ' -
RL,n,k;L’,n’,k’
V2=L2+4(p-1)LZ (16)

- [ dodepl @@ n@Dh o). 22

In Eqg. (13) two important parameters appear;which de-

fines the overall time scale of the diffusive process, and . )
=pr/p which is a measure of the relative importance of theThe mindex can thus be simply used to label blocks of the
translational and rotational motions. Now the complete symdiffusional matrix. We can then write the formal solution to

metrized diffusion equation reads: Eq. (20) as

190. A " A
;EP(wO,ZO|w,Z,t)=(FR+,U,FT)P(wO,ZO|w,Z,t).

17
To solve this complicated equation, we proceed by expand- @3
ing the transition probability over an orthonormal basis func-where we have employed the solutions of the eigenvalue
tion set as in Refs. 4-6, 20, and 31. In this case the basisquation
function set is chosen as a direct product of Wigner matrices
(for the angular dependencand harmonic plane wavéfor

CLm,n,k(t)= E 2 X[n,n,k;K
L'n' k' K

rmemT m
X eterxK;L’Yn/’k’CL’Yn"k/(w01§010)1

A= KT, (24)
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X is the eigenvector matrix, ant is the diagonal matrix Fourier transforms®3133we concentrate on the calculation
. . A of these quantities. The roto-translational correlation func-
containing the eigenvalues & : : .
tions are defined in general as

P(wo,&olw, &)= Dk (@)Y EXI 1 ek
mnn’ kkr(t) fdwdfj dwodéoD mn( w)

><eterXK L'.n’ k’CL’ 1 (@0,60,0)

X P (wg, Eol 0, £,1)D K (wg)e ' &
=2 Dl @) i X ek

=f dwdgf dwed&oDp, n(w)e'e

XEKKEL, o o D (00) Y (€0), " "
25) XP " wg,£0)P™ " w,§)
where the initial values of the expansion coefficients are ob- X I5(wo,§o|w,g,t)Dant:,(wo)e*ik'%. 27)
tained from the condition:
Plwp, & |0,£,0)= 8(w— wg) 8(£— &) (26) Inserting into this equation the expression previously found,
0:50/W,6,Y)— 0 0/-

Eq. (25), for P(wq,&|w,£,t) and noting the asymptotic con-
Equation(25) represents a formal solution for the conditional dition

probability that we shall employ to calculate the relevant

properties of the problem. lim B(wg, £ol@, £, =P (wg,£)PYAw,6),  (29)

t—oo

C. Roto-translational correlation functions

As dynamic observables can be typically described inand integrating we obtain the following explicit expression
terms of roto-translational correlation functions or of theirfor the correlation functions:

[2'+1 [23+1
LL’ 4
(I)m nn’ kk’(t)_\]z E[ , E ; (_1)p+p 23"+ 1 23"+ 1XJ p.r; KXJ’ P’ Ket rKXJ” n’—p,k—r;0

p.r JI,p T J/I’J//I

xf(?,,,’nfp,kar,;OC(L,J’,J”’,m,—m)C(L,J’,J”’,n,— p')C(L",3,3",m,—m)C(L",J,J",n",—p), (29

where  C(J4,J5,J3,m;,m,) are Clebsch—Gordan dependent, quantities and may be expressed in terms of order
coefficients®® This expression may be rewritten in a form parameters, without going through the entire solution of the
more convenient for computational optimization by definingdiffusion equation. This observation allows us to check the
auxiliary vectors whose rotation may be performed at theeliability of the previously done truncation, and provides an

same time of the diagonalizatioh®! indication about the number of basis function to be retained
in the expansior{18).
VL o o=(—1)P 23+ 1 Initial value: At the initial timet=0, the transition prob-
(Vimnidarpr. ) JE V2371 ability distribution is known and is simply given by a Dirac’s

<o delta distribution(26), so that
X XJ’",nfp’,kfr’;OC(Lv‘J’ ,J"’,m, - m)

X C(L,J",3" n,—p"), (30 q);%nn’,kk’(o) <D (@)D :,(w)eikfe*ikf)
LL’ . L o L+L’
(Dm,nn’,kk’(t)_; (JZDY (Vm,n,k)J,perTP,r,K) — E (_1)mfn’C(L L! Jm _m)
J=jL-L]
xetpf?(yz, , (v;in,yk,)J,,p,yr,kg“,yp,yr,yK) xC(L,L",d,n,—n’)
o
31) X(Dy ()€ TKIE), (33
’ LL’ ; ’ . .
=§K: (bhﬁnn,’kk,)Ket(am,nn',kk')K. (32 where the average®; . (w)e'* " )¢) are orientational—

positional order parameters.
Limiting values: The initial and long time asymptotic Asymptotic value: In the long time limit the transition
values of the correlation functions are equilibrium, time in-probability of the Markov process taking the state variable
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TABLE I. Potential expansion coefficienfsee Eq(2)] and corresponding order parameters used for the disk

and rodlike molecules discussed.

Uz0,0 U220 Uoo,1 Uz0,1 Uz 1
Disklike 1.900 0.618 -0.108 2.149 0.519
Rodlike -3.333 -0.222 -0.378 -0.760 —4.239
(D3 (D3 (cos&) (D3,cosé) (D3, cosé)
Disklike -0.300 -0.223 0.400 —0.200 -0.150
Rodlike 0.400 0.0693 0.400 0.200 0.150
from (wq,&p) t0 (w,€) tends to the equilibrium value of the (b"", )
arrival state f,£), so the asymptotic value of the correlation AL = > Zmunn’ kk 7K (41)
. . . . m,nn’ kK’ ’ '
functions is given by expressiq28) K#0 (aanLnn, K K

(Drhlljnn’,kk’(oo) :<DLm,n(w)eik§><Drljn,:'(wO)eiik,§0> 5?:;) )
4

1. Symmetries of the correlation functions

The correlation functions defined as (&7) are not all
independent but obey symmetry relations which link some of

Another quantity, particularly helpful in various spec-
troscopies, is the spectral density, defined as the Fourier—
Laplace transform of the correlation functions, subtracted of

their long time asymptotic value, at a frequensy

LL' ~ “ LL’ e
‘]m,nn',kk'(w):fo q)m,nn’,kk’(t)e totgt

them. These relations are important both to check the valid-

ity of the results obtained and to reduce the number of cor- :f z (blr_nLr;n’ kk,)Ket(all;]l,_nn’,kk’)'(e_i;)tdt
relation function to be studied. The symmetry relations ob- 0 K Y
tained implementing particle and mesophase symmetry are: L L
L L " Ll L _ 2 (bm,nn',kk')K(a‘m,nn’,kk’)K (42)
Do e (D =(D n(@g) € 0D T (w)e ™8 (39) K7o (@t o242
,nn-, ) m,nn’ kk’ /K w

=(D" (o) € 0D % | (w)e 'E)

LL'
=0

—m,nn’ ,kk’

(t) (36)
=(Dh, _n(wo)€ DL * | (w)e 'é)
:CDanI,_Lnfn’,kk’(t) (37)

= (DY, n(wo)e KDL %, (w)e'é)

:(Danl,_nn’,—k—k'(t)- (38

We also have the asymptotic long time limit results
(brl;ql,_;;nf,kkr(oc):(), for m#0, (39)
(b:tr;n’,kkr(oc)zo, for n,n"odd. (40)

D. Correlation times and spectral densities

To provide a further characterization of the roto-

The correlation times are connected to zero frequency spec-
tral densities. Having provided a general set of expressions
for what we reckon are the relevant dynamic quantities of the
problem, we now turn to numerical results.

lll. RESULTS

A key question we are concerned with is the effect of
roto-translational coupling on experimental observables. To
try to answer this, we have investigated the dependence of
some relevant rototranslational correlation functions on the
molecular geometry of the probe for various smectic poten-
tials. In particular we have studied two types of probes:
Elongated(rodlike) probes which tend to align their axis of
minimum biaxiality(taken as molecularaxis) parallel to the
director, and oblatédisklike) probes which tend to align this
axis perpendicular to the director of the phase.

We have arbitrarily chosen to use for the coefficients of

translational dynamics two other quantities linked to experithe biaxial potential in Eq(3) values that yield the orienta-

2 2 H
ment may be introduced. The first one is the correlation timetional order parameter®gg), (Dg,) used in Ref. 5 and a
defined as the area comprised between a certain correlatidfnslational order parametéros¢)=0.4. Moreover we use

function and its asymptotic limiting value.

LL’ N T L
7-m,nn’,kk’_fo [q)m,nn’,kk’(t)_q)m,nn’,kk'(oo)]dt

> Ly’ LL'
B J' Z [(Omnn kk')Ket(am’””"kk')K
0K e

- (bLmI,_r;n’,kk’)O]dt'

a geometric type mean for the mixed orientational—
translational order parameters:  |(D3,cosé)|
~\J[(DGo[(cosd)]; |(DF,cosd)~[(Dgl[(cosé). The set
of potential coefficients and of the order parameters corre-
sponding to the cases that we have studied is reported in
Table I.

As a check of our calculations we have first tried to
reproduce already known results. Thus we have confirmed
that in the case of purely rotational diffusion of our biaxial
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a2 0.06 — - 006 —
= g i
) Q005N
0.05 = \
e e
0.04 0.04 -
0.03 ¢ 003‘+
0.02 F T T
0'%0 02 04 06 08 10 1.2 00200 0.2 04 06 08 10 1.2
0.01 Pt pt
0.00 FIG. 3. Effect of the rotational and translational diffusion tensor anisotropy
70 ratios », nt on the correlation functions for elongated molecules. The ratio

(n/7m7) has been fixed at 4. Qa) (FuII line) »=1.25, »r=>5.0 (correlation
times arerd%, 1= 7.08x 1072, 755 201~ 1.30x 1072); (b) (dashed ling 7

=2.5, 77=10.0 (1530, 4.90x10 2, 755 2115 116><1O 2); () (dotted
line) »=3.75, 7r=15.0 (13301~ 4.08< 1072, 735 , ;= 1.03x10"2). The
values of the other coefficients arg=1.0, e=0.6, e;=0.3.

FIG. 1. Spectral densitie%o(&)) for the roto-translation of uniaxial probes
in the case ofa) (full line) rodlike molecules as treated by Moro and Nordio
(Ref. 20 for smectic potential coefficientst,o = —3.70, Ugy=3.00,
Ugo1=—1.30 corresponding to order parametgiB3,)=0.564, (cosé)

=-0.725, (D3,cos&)=—0.386. (b) Disklike molecules(dotted ling. We -
have usedu,yq=0.137102, Ugp,=—2.84X10°2, U, ,=—1.10<10, Solute and solvent parameters, whose effects are difficult to

corresponding to(D2)=—0.300, (cos&)=-0.725, (D3,cos&)=0.466.  disentangle. We have thus tried to examine some of the ma-

The diffusion parameters employed arg=0.08824, »=4.00, #r jor effects one by one and we now present in turn our results

=0.123 53. The frequency is in p units. for correlation functions of rodin Figs. 2—4 and disk(in
Figs. 5—7 solutes.

. . I In Fig. 2 w rt examining the eff f increasing th
molecules (that is when the translational contributiga 9 © start exa g the effect of increasing the

—0.) we obtain indeed the same results presented in Ref. elative importance of the translational motion, as obtained
We have then considered the case of roto-translation o%y varying the parametgr, on two specific correlation func-

iéo &
uniaxial probegthat is the limit of vanishing rotational and to<n§ C(Da? O)Oelll géDP§£C?Z€2§> Eﬁ(ec?lsrftt)igl alrr]]c\jlj)voezs‘zrﬁé )
translational diffusion biaxialitye=0., e;=0.) in smectics 024 ™0 2 y

and we have found that the results for the spectral densities lgcular tumbling, the second also depends on spinning
Sround the molecule axis. The effect of translation is no-

J5o( @) = 350,04 @) and for rodiike molecules, shown in Fig. giceaple in both cases, but larger in the first one that shows a
1, are in excellent agreement with the results obtained by, ,ch faster relaxation to equilibrium asincreases and the

0;
Moro and Nordid”in this limiting case. As discussed in Ref. comiined effect of translation and rotation comes into play.
20 the sharp peak at zero frequency is an effect of the slower

translational motion. We have then also computed the similar
spectral density for a disklike solute particle moving in a
smectic, shown in Fig. 1 as the dotted line. The behavior isy
qualitatively similar, although the details are of course quite
different, in particular at low frequencieé;e 2.5) where the o0
translational effects are greater. 0.005
We now turn to the introduction of biaxiality of the 0,000
probe molecule and of the solute—solvent potential acting on s -’ U
this diffusing particle, which represents the main thrust of 00 02 04 06 08 00 02 04 06 03
the paper. The problem we deal with involves a number of

0.030
0.025 -
0.020
0.015 -

0,02,11

o
o

(D0,242,11

22
q)0,00,ll

0.8
pt

FIG. 4. Influence of the rotational and translational diffusion tensor biaxi-
ality coefficientse, er [see Eq(12)] for rodlike molecules. We consider the
correlation functions on the second rank correlation functidrfﬁ)z,ll,
FIG. 2. Effect of the translational diffusion contribution parametesn the ~ ®3%, 15, $55 541, and®2% , ;. The ratio (/er) has been fixed at 2.0a)
second rank correlation functio@%éo,llandq)gé,2'11 and on their respec-  (full Iine) €=0.3, &=0.15 (7-0 e —9.55x10°%, 3%, = —3.68

tive correlation timesTgvzoov11 and 7-02 211 for rodlike molecules(a) (Full X1073, 785 ,1,=8.18x1078, 735_ 21~ —1.31x107?); (b) (dashed ling
line) w=0.2 (Tooon 7.93X 10* , 7322 211=1.38x107%), (b) (dashed €=0.6, er=0.3 (54, =1.39x10°2, 73%,,=—4.50x1073, 735 5,
line) w=1.0 (r3%0 1= 3. 63>< 1078 : 785 11— 1.04x1072), (¢) (dotted ling =1.04x107%, 135 5= —1.35¢ 10—2); (c) (dotted ling €=0.9, er
u=5.0 (1525, =2.44x10°2, 785 ,,,=9.00x10 3. 7;=20.0, €=0.6, =045 (r59p,=—2.62x107%, 724,,=—5.83x10°° 135 ,,,=1.70

er=0.3. X1072, 735 ,1,= —1.40<10°2).
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FIG. 5. Disklike molecules. Dependence of two correlation functions from E 0.045 -
the translational contribution parametefg) full line w=0.20 (T5%01; e@“
=3.56x10°2, 755 ,1,=1.34x10°%), (b) dashed linex=1.00 (r5501; 0.040
=1.92x1072, 755 ,,,=6.06x107%), (c) dotted line u=5.00 (To501; 0,035
=1.03x10"?, 785 ,,;=2.46x 10 *). The other diffusion coefficients have
been fixed at the values=5.00, ;=20.0, e=0.60, er=0.30. 0.030 -
002%0 02 04 o6 o8 ¥o 02 04 06 08
Moreover an increase gi induces a decrease of the maxi- pt pt

; 22

mum O_f the fungnonsl)(,’z, 2,11+ BOth thetse effeCt_S can also FIG. 7. Disklike molecules. Dependence of the correlation functions from
be noticed looking at the correlation times which becomene biaxiality coefficient§see Eq(12)] e, e for the rotational and transla-
shorter asu increases. tional diffusion tensor. The ratioe(et) has been fixed at 2.00a) full line

We examine next the effect of anisotropy in the rota-€=0:30, e1=0.15 (1501 =162x10 % 7705 =583X10°", 755 51
tional and translational diffusion tensors by varying the ra-~+90<10% 7z-21=—2.23¢107); (b) dashed line e=0.60, er
i defined in Eq(12), while keeping a certain ratio 030 (oopar 16210 7 7hop0 - 2.92¢10 %, 7o 20~ 10110,
tios #, 7y defir ai1s), €ping : 72 511= —2.69x107%); (c) dotted linee=0.90, ey=0.45 (23, 1.63
of the translational to rotational contributiong 7 fixed to  x10°2, 211723105, 723 ,,,=1.0210°%, 725, 1= —3.40
4.0 and assuming a certain translation—rotation ratilnere ~ x1072). The other coefficients have been fixedat 1.00, 7=5.00, 7;
1. This effect, that is related to a change in the molecule= 20.0.
aspect ratio is shown in Fig. 3 to be not too big, at least for
the chosen values af. - . .

pinning type correlation functio®3% ,;, and should lead

The consequences of changes in the rotational and transt bservable results. No significative differen n be ob
lational biaxiality €, et are shown in Fig. 4 for various bi- 0 observable resufts. No significative difierences can be o

axial correlation functions. Here the effect of the biaxiality is served between the two rod and_ d'.Sk cases W.hef.‘ varying the
larger for the first type of functionsni=0), while the sec- parametery. Conversely the variation of the biaxial param-

ond type M=1) seems to be almost independent from thes??toirssiviﬂ%ei i:etr;et;e':rieveyaled only in the correlation func-
parameters. Notice also that for these correlations of differ- B M9 ) .
In order to provide quantities more directly related to

ent Wigner functions the starting value can be negative as iéx erimental observables we have also investigated the ef-
could be deduced directly from E¢33). P 9

A similar type of study has also been performed on dis_fect of the relative importance of the rotational and transla-

torted disks and reported in the next three figuies, Figs. tional motion denoted by the parameeron tAhe behaVIor.of
5-7). Also in the case of disklike molecules the effects ofthe frequency dependent spectral dengfiyw). To do this
increasing the value of the parameeis to produce a faster We have calculated(w) for various values of the coeffi-
decay of the correlations to their asymptotic valy&s;. cient u for both cases of prolate and oblate biaxial mol-

(34)]. The effect seems to be particularly important for theecules, generalizing the results shown in Fig. 1 for uniaxial
rod and disklike molecules. The results are reported in Fig. 8

N

018y — 0.05
0.16
0.14 [
0.02 1Y
0.10F 3
0.08 |
0.06 |

1 - .02 1
0'040.0 E . . 0.0 0.4 0.8 1.2

22
(DO,OO, 11

0.04 ff

0.03

FIG. 6. Disklike molecules. Dependence of the correlation functions from
the anisotropy ratiog, # in the rotational and translational diffusion ten-
sors. The ratio 4/ ;) has been fixed at 4.0 (full line) »=1.25, 5
=5.0 (550, 5.11x10°2, 755 ,,,=2.35x10 ?); (b) (dashed ling » FIG. 8. Spectral densitie¥3,(w) behavior for rodlike molecules of table 1:
=2.50, 77=10.0 (r3%0,1=3.97< 102, 735 _,,,=1.66x1072); (c) dotted  (a) u=0.25, (b) w=0.50, () ©=0.75, (d) u=1.0, (&) u=1.25, () u

line 7=3.75, 77=15.0 (3%~ 3.33x10 2, 735 ,,,=1.33x10°2). The = =1.50,(g) »=1.75. The other diffusion coefficients are the same employed
values of the other coefficients arg=1.00, e=0.60, e;=0.30. in Fig. 1: #=4.00, y=0.12353,6=0.6, e;=0.018 53.
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mental dat&®’ this more general theory instead of one purely
based on rotational motions such as that in Ref. 5. We also
mention that computer simulations data on molecular diffu-
sion in smectics are starting to be availdbland that the
analysis of these molecular dynamics virtual experiments
will provide, for selected model systems, roto-translational
correlation functions such as the ones directly investigated
here. This should allow a test of the present diffusional
theory in models with specific molecular interactions, con-

05 tributing to an investigation of the relation between molecu-

lar features such as size and shape anisotropy and the type of
FIG. 9. Spectral densitie}3,(w) behavior for disklike molecules of table 1: motion observed in smectic phases.
(@ u=0.25, () ©=0.50, (c) #=0.75, (d) u=1.0, (6) u=1.25, (f) u
=1.50,(g) ©=1.75. The other diffusion coefficients are the same employedACKNOWLEDGMENTS
in Fig. 1: »=4.00, 77=0.123 53,¢=0.6, e7=0.018 53. _ )
We are grateful to MURST PRIN ex 40%, University of
Bologna, CNR and EUTMR-FMRX CT97012) for sup-

for rods and in Fig. 9 for disks, plotted as a family of curvesPort to this work. We thank E. Berggren and R. Tarroni for
using seven different values pf. In both cases as the trans- Useful discussions in a preliminary phase of this work.
Iatlo_r?all contributionu increases .the overall relaxation to APPENDIX A: MATRIX ELEMENTS OF THE DIFFUSION
equilibrium becomes more effective and the faster decay t%PERATOR
equilibrium gives a broader spectral density.

0.01

0.00

Here we present, for the convenience of a reader inter-
ested in investigating smectic potentials different from the
IV. CONCLUSIONS one studied here, explicit expressions for the various terms
We have developed a theory for roto-translational diffu-contributing to the diffusion operator matrix elements pre-

sion of a rigid biaxial molecule in a uniaxial smectic liquid sented in Eqs(13), (15), (21), and(22).
crystal. We have considered elongated or flat particles ang Rrotational part
we have shown that the coupling of rotations and translations | R, _
can have significant effects on correlation functions that, in?L ;m,n" k' [VEIL,m,nk)
turn, have a direct influence on experimental qbservables for =[L(L+1)+(7—1)n?18_ L' Snn Sk (A1)
these molecules. The theory should be useful in the plannin
of experiments particularly sensitive to roto-translational ef-?L’,m,n’;k’|V2U|L,m,n;k)
fects such as those involving diffusion studied by optiéal, 1 PLF1

neutron scattering* and magnetic resonance = \/z7— Upmyrspr[ L7(L"+1)
techniques®3>2® Another application should be in allowing 2 N2l +1 0 '

the_ proper determination of rotational and trans]aﬂonal dif- +(7—1)n"2]C(L,L",L",m,0)C(L,L",L",n,n")
fusion tensor components for molecules of arbitrary shape

dissolved in smectics by employing in the analysis of experi- X (Sk—kr prt Ok—k’,—p") Onn/ — v » (A2)

(L",m,n";K’|(L L) (L_U)|L,m,n,k)

1 2L+1 ney "eAn 1/ mey m "y 1/2
:Z m 2 2 uL//nu;pHULmnH/;pw[L (L +l)_n (n +1)] %ﬁl_ (L +1)_n (n _1)]

L",n”,p” L,”,n,”,p”,
x >, C(L",L",3,0,00C(L,J,L’",m,0)C(L",L"”,J,n"+ 10" —1)C(L,J,L',n,n"+Nn") 8y s _pr—ym
J

X[&k_kr'prr_*_ pm+ 5k_kr‘_pr!_pm+ 5k_kr‘prr_pm+ 5k_kr’_p!r+ pm], (A3)

(L",m,n";k"|(L2)?|L,m,n,Kk)

AR DR > C(L,J,L",mOC(L",L",,00)
= - 7 NN Uy npmreqrUy mpm. m Wy ,m, y ,J,U,
4N2L'+1 Lot prEL TR 4

L"” n" p/r L™ ™ pH/

X C(L,J, L, ,n,n”"_ n’",n')C(L”, L"’,J,I’l",n’")[ §k—k’,p”+p"’+ 5k—k’,—p”—p’”+ §k—k',p”—p’"+ 5k—k’,—p”+p”’]1 (A4)
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(L",m,n";k'[(L2 +L2)|L,m,n,k)

=(L(L+1)—-n(n+1)]¥JL(L+1)
+IL(L+D)—n(n—1)1*L(L+1)—(n—1)(n—2)]*25 n-2) 8L/ Sk

—(n+1)(n+2)1"25y o2
(A5)

UpryrrC(L,L", L mO)[[L"(L"+1)—n"(n"+1)]Y{L"(L"+1)— (n"+1)(n"+2)]*2
n” 2)]1/2

(L’,m,n’;k’|[(L2
2L+1
>

2 2L +1L” n” n
(L"+ 1)_nrr(nn_1)]1/2[LH(LH+ l)_( l)

XC( 1L"1L ynyn"+2)5n,n’7n”72+[|-”
(A6)

XC(L,L”,L,,n,n”_Z) 5n,n’fn”+2][5kfk’,p”+ 5k*k/,*p" y

(L",m,n";K'|[(L )%+ (L_t)?]|L,m,n,Kk)

1\/2L+1 > > > c(L,J,L",m0C(L",L",J,0,0
B Z ml_// n” p// L/// n/// p/// uL”,n”;p”uL”’,n”’;p’" J ( o ,m, ) ( ' e )

X[[L//(L//+ 1) n//(n//+ 1)]1/2[L///(L//r+ 1)_nn/(nm+ 1)]1/2C(L,J,L',n,n +n///+2,n )C(L// L” Jn"+1n"+ 1)
i 1)]1’2C(L”,L’”,J,n"—1,n”’—l)C(L,J,L',n,n"+n"’—2,n’)]

+ [LH(LH+ l) _ nrr(n/r_ 1)]1/2[L/H(Lm+ l) —n"”
(A7)

X[ﬁk k! pn+ pr//+ 5k_k/’_plr_pn/+ 5k_k/Yp!/_p///+ 5k_k/’_prr+ pr//]

2. Translational part

R 2 2 2 92
(L",mn"K| §(2+7IT)+EGT(D0,2+D0,72)_§ Fr:

1 2 2L+1
—K?| 32+ )L S — = N ‘/2L —C(L2L M O)(C(L2L" 1, =2) Sy 0o+ C(L 2L N2 Sy o)

2 2L+1
_5(1_’7T)‘/2L —C(L2L" mO)C(L2L" N0) 50 | Sk (A8)
' ’ ’ 1 2 2 2 2 2 (922/{
(L' m,n";Kk’| §(2+ 77+ %eT(DO,Z—'—DO,—Z)_5(1_7]T)D0,0 ? |L,m,n;k)
2L+1 n n n
= U1 > P Uy (2+77T)C(LL L',m,00C(L,L",L",n,n") 8, v
LH " pH
1
+, C(L,J,L’,m,O)C(L”,Z,J,O,O)l%GT[C(L,J L',n,n"+2)C(L",2,,n",2) Sy ' —rvr—2
J
(A9)

2
+C(LIL NN =2)C(L",23,0", = 2) 8 i) = 5 (1= pp)C(LI,L" 0" C(L",23,0",0) S f

5] L
7E |L,m,n;k)

2 2 > 2. 2
er(Dg ot Do -2) 3(1 771)Dgo

1
(L",m,n";k’| §(2+ 77T)+%

J2ETL s s S eIt mo
= — ’— p p ULU n HULI” ”’ ”I m
2L + 1L”Yn"‘p” L’” nr p”’ n p n

1
x[—(2+ #1)C(L,J,L",n,n"+n")C(L",L",3,0,00C(L",L",I,n",N") 8 s —pr—ym

2
er(C(L",2J3",n",2)C(L,J,L",n,n"+n"+2)C(L",J",J,n",n" +2)

%

+> C¢(L",3',3,0,00C(L",2,3’,0,0)
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5n’nr_nu_nw_2+ C(L"’,Z,\]/,nm,—Z)C(L,J,L’,n,n"-f- n"’—Z)C(L",J',J,n",n”’—2)5n’n1_nu_nm+2)

2
—3(1=7)C(LI,L N " +n")CL",23 0", 0/C(L" 3" I.0",0") Sy

] : (A10)

ExpressiongAl)—(A10) are general and independent from the number of functions retained in the expansion of the
potential. Inserting in this expressions the explicit form of the poteriBalallows the expansion of the sums and the
substitution of the explicit algebraic value for the Clebsch—Gordan coefficients and yields the following simplified form of the
diffusion operator matrix elements:

LL’ .
Rm,nn’,kk’ _{

. 2 2
— 52+ IR [LL+ )+ (= D24y

S+ g[L(L+l)—n(n+ DI¥L(L+1)— (n+1)(n+2)]H2

€ 1 12
X Onnr—2t 5['—('-4'1)—”(”—1)] IL(L+1) = (n=1)(n=2)128, 1142|811 Sk

2L+ 1C L,2L",m,0)| | N\ 2 k
ST ( m,0) 2‘%&

2
ZIC(L,2L",n,2) 8 p -2+ ( gt 5(1- nT)kz) C(L,2L",n,008, nr
2
+ ( No— —eTkZ) C(L,2L",n,—2)8nr+2

2L+1
% S+ ‘/2L —C(LAL" MONC(LAL N4 54

+NsC(L,4L",n,2) 6 nr—2+AgC(L,4L",N,0)6, n +AsC(L,AL N, —2) 6,42

[2L+1
+)\4C(L,4,L,,n, _4) 5n’n!+4] 5k,k’ + mC(L,G,L',m,O)[)\7C(L,6,L',n,6) 5“,[1’—6

+NgC(L,6.L",n,4) 6 nr— 4+ NgC(L,6L",n,2) 5 -2+ N1gC(L,6,L",n,0) 8, iy +AgC(L,6L",N,—2) 5 v 42
+NgC(L,6L",N,=4) 8 44T N7C(L6L",N,—6) 6 n+6] 0k k T N120L, L7 Onnr Fk—kr|.1

2L+1
+\/2L —C(L2L MO C(L 2L 1,2) 8 -2+ NisClL 2L 1,0) S

[2L+1
+)\12C(L721L’1n1_2)5n,n’+2]5lkfk’\,l+ 2L +1C(L 4L’ mO)[)\MC(L 4L,,n,4)5n n’'—4

+N1sC(L, AL \)N2) 8 nr 2T N1eC(L,4AL",N,0) 6, 0+ N1sC(L AL )N, —2) 6 12

2L+1
TN C(LAL" N, —4) 6 1+ 4] Ok—kr|. 1T N17OL L7 Ot Okt .27 \/ TR 2L",m,0)

X[N1gC(L,2L",1,2) 82+ N1eC(L,2L" 1,00 8y + N 16C(L,2L" N, = 2) 84 2] Sk ierf2
2L+1 , ,
+ Vo gC(LAL MOMNGC(L AL 1,4 Sy st MoiCLAL 1280 -2+ XL 4L ,1,0) 5y

2L+1
+Ap1C(L,AL" N, —2) 8y 2 NaoC(L, AL N, = 4) 1 v+ 4] Sk 2 \/ZL —C(LEL",mO)

X[N3C(L,6.L",n,6) 80—t N2aC(L,6L",N,4) 8 nr— 4+ NpsC(L,6L",N,2) 8, 2+ NpC(L,6L",1,0) 8 s
FN2sC(L,6L",N,—2) 8, 2+ NogC(L,BL" N, —4) 8 v+ at NosC(L,6L" N, —6)8n 0+ 6] Fk—kr) 2 (Al1)
The constants that appear in this expression have been defined as:

6
1,02 3.2 1,2 3.2 1/ 2 2 1
N1= = 5(U5p gt 2U%0 01 32U 1+ 3U%0 1) — 75 (2U5; gt U%p 1) — €5 (Uz2, 00,0 2 Uz2,1U20,1)
1 1,,2 1 1 2 3 2 1 1 2 1 11 2 1 2
+ | 2(— §Ugost 15Uo00,1U20,1~ 72U%0,1~ 35U3220) — 772 (12Ugo 1t 15 Uoo U201 a30U201F 76U22,1)

1
+e Ugo.tU2o 1+ ZUyg U (A12)
T5\/—( 00,1422,1 20,1 221)
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The expansion of the sums presented in Edsl)—
(A10) and the subsequent determination of constéhis)—
(A37) have been performed with the help of a Mathematica
program=°

APPENDIX B: COMPUTATIONAL ASPECTS

The computational techniques employed for the storing
and diagonalization of the diffusion matrix are essentially the
same described in Refs. 5, 6, and 31. In particular we found
the use of Polnaszek’s routifégo perform the calculation
of correlation functions without going through the entire di-
agonalization of the diffusive matrix particularly useful. The
determination of the eigenvector corresponding to the zero

eigenvalue i(E,n,k;K) which is necessary to initialize the aux-
iliary vectors(30) has been efficiently performed by the con-
jugate gradient methotf*! Furthermore because this eigen-
vector corresponds to the equilibrium distribution another
optimization was possible by setting to zero the values of the
diffusion coefficients with a consequently reduction of of the
matrix bandwidti?. The calculations of the integrals needed
to check the correctness of the asymptotic and initial limit
values of the correlation functiort83) have been performed
using an adaptive three-dimensional Gaussian quadrature
routine®? The comparison between the two methods has
shown that using an expansion up lte=20, n=12, k=6
basis functior{corresponding to 2457 basis functigims suf-
ficient to guarantee agreement to at least the fourth signifi-
cant figure in the results.
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