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We report the results of a Monte Carlo investigation of a system of rod-like particles in-
teracting via the Gay–Berne potential with an embedded transverse dipole. We describe
the effect that the dipole has on the molecular organization.
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1. Introduction

The study of the relationship between a certain molecular structure and the types

of liquid crystalline mesophases1 that can be obtained at given thermodynamic con-

ditions as well as the properties of the mesophases, if any, that are actually formed,

is a subject of great current interest. On one hand, there is the fundamental issue of

identifying the minimum set of molecular features required for a certain collective

organization to be produced. On the other, given the technological importance of

liquid crystals in the display device industry, there is the more immediately practi-

cal issue of designing new liquid crystals with specific properties and of optimizing

the existing ones.

In the effort of coming to grips with this difficult problem, molecular scale

models, such as those based on the Gay–Berne (GB) potential2 have proved to be

very useful. The GB potential has a repulsive and attractive contribution with a

12–6 inverse distance dependence form:

UGB = 4ε0ε(ûi, ûj , r̂)

×
[{

σs

r − σ(ûi, ûj , r̂) + σs

}12
−
{

σs

r − σ(ûi, ûj , r̂) + σs

}6]
, (1)

with unit vectors ûi, ûj defining the orientation of the principal axes of particles

i and j, r = rj − ri ≡ rr̂ the intermolecular vector of length r and σs and ε0
are used as molecular units of length and energy. The anisotropic contact distance
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σ(ûi, ûj, r̂) and interaction energy ε(ûi, ûj , r̂) are complicated but analytical func-

tions defined in Ref. 2. The simple GB potential allows modeling of the shape and

of the nonspecific, van der Waals type, attractive interactions, in particular of the

length to breadth ratio σe/σs and of the ratio of the side-by-side and end-to-end

interactions εs/εe, but it does not contain specific electrostatic interactions. Here we

are interested in continuing the exploration of the effects of electrostatic dipoles and

we consider a potential that is the sum of a Gay–Berne (GB)2,3 and a dipole–dipole

term:

Uij = UGB + Udd . (2)

where the dipolar contribution is given by

Udd =
µiµj

r3d
[µ̂i · µ̂j − 3(µ̂i · r̂d)(µ̂j · r̂d)] , (3)

where rd ≡ rdr̂d is the vector joining the two point dipoles µi = µi µ̂i, µj = µj µ̂j
at distance rd. The effect of longitudinal dipoles has been studied by various

authors.4,5,6 The case of a transverse permanent dipole, very important in prac-

tice because of the many liquid crystals with polar lateral substituents, has been

much less studied. In a first but fairly general investigation, Levesque et al.4 ex-

amined a system of 448 hard spherocylinders with aspect ratio (length L of the

cylindrical part to diameter D of the capping spheres) of 5 and a strong dipole

in various positions and orientations, including transverse. They found that the

transverse dipole increased structuredness in the isotropic and in the smectic A.

In the latter phase, interdigitation was reduced and some indications of an overall

polarization were found, although a caveat was issued by the same authors about

the possibility of a spurious observation. Jackson et al.8 have also studied a sys-

tem of hard spherocylinders with L/D = 5 and a central transverse dipole. They

performed NPT Monte Carlo simulations on systems with N = 1020 particles and

found that the smectic A phase was stabilized, while the nematic disappeared al-

together at low temperatures. In the smectic, and upon lowering the temperature,

the very interesting observation of ring-like domains and of antiferroelectric chains

of dipoles in the layer plane was made. However, it should be noticed that in the

case of dipolar interactions superimposed to hard repulsive ones, the temperature

dependence comes entirely from the dipolar contribution, while in a more realistic

situation one might expect this to be only a fraction of the overall temperature

dependence. From this point of view, the GB potential has some advantages. In the

only study of which we are aware, Gwóźdź et al.9 have studied a relatively small

system of GB 256 particles with a central transverse dipole in a cubic box, employ-

ing the original2 GB parametrization. No nematic phase was observed in this case

too, while a rather surprising small tilt of the director was claimed.

Here we shall consider in detail a relatively large (N = 1000) GB system with a

different parametrization3 and a transverse dipole in central position and we shall

examine the resulting molecular organizations, paying attention to the formation

of super-molecular dipolar structures.
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2. The Simulations

We have performed extensive canonical ensemble (constant number of molecules N ,

volume V and temperature T ) Monte Carlo (MC) simulations of a system of dipolar

rod-like particles interacting via the potential given in Eq. (2). In particular, for

the GB potential, we employ shape anisotropy σe/σs = 3, interaction anisotropy

εs/εe = 5, cutoff r∗c = rc/σs = 4.0 and the same parametrization introduced in

Ref. 3, with GB exponential coefficients µ = 1, ν = 3, that has the advantage of

offering a wider nematic range compared to the standard choice of µ = 2, ν = 1.2

Molecular orientation is defined with respect to the principal axes of particles i and

j, namely ûi ≡ ẑi and ûj ≡ ẑj . In this framework, we consider transverse dipole

moments µ∗i ≡ µ∗x̂i, µ∗j ≡ µ∗x̂j (we use the dimensionless µ∗ ≡ µ/(ε0σ3s)1/2 and
r∗d ≡ rd/σs) positioned in the center of the molecule. We use a dimensionless dipole

moment µ∗ = 2 that, assuming a molecular cross section σs = 5 Å and an energy

scale ε0/k = 100K, would correspond to about 2.6D. Our sample consists of N =

1000 interacting particles enclosed in a cubic box with periodic boundary conditions

at a dimensionless density ρ∗ ≡ Nσ3s/V = 0.3 and for several temperatures T ∗ ≡
kT/ε0 in the range 4.0–1.6.

The dipolar energy for particles in the box surrounded by its periodic images

has been computed using both the very reliable but time consuming Ewald sum

technique10 with tin foil boundary conditions, and the more approximate Reaction

Field11 method, with cutoff r∗RF = 6.0 and dielectric constant of the surrounding

medium εRF = 1.5. We have found that, for our model and sample size, the two

methods give essentially the same results for the energy (within 0.01%) as recently

found for other dipolar systems.12,13 We also find the use of tin foil boundary

conditions (εRF =∞) for the Reaction Field to be satisfactory, in agreement with

Ref. 13. Thus, as the Reaction Field method is an order of magnitude faster for our

sample size, we have used this approach for the large majority of calculations and

Table 1. Results from the Monte Carlo simulation of N = 1000 systems of GB rod-like
molecules with central transverse dipole µ∗i = µ∗ µ̂i, with µ̂i ≡ x̂i and µ∗ = 2 at
several dimensionless temperatures T ∗ corresponding to the phases indicated. We report
the number of equilibration neq and production nprod cycles (1 cycle = N moves), the
energy 〈U∗〉, the order parameter 〈P2〉 = 〈R20,0〉 = 〈(3 cos2β − 1)/2〉 and the biaxial

order parameter 〈R22,2〉 = 〈(1 + cos2β) cos (2α) cos (2γ)/4〉, where α, β, γ are the Euler

angles between molecular axes and director.

T ∗ neq/103 nprod/10
3 Ph 〈U∗〉 〈P2〉 〈R22,2〉

1.6 200 150 SB −18.7± 0.1 0.97± 0.02 0.02± 0.01

2.0 200 150 SB −17.3± 0.2 0.96± 0.02 0.02± 0.01

2.4 200 150 SB −15.9± 0.2 0.94± 0.02 0.01± 0.01

2.8 200 150 SA −14.0± 0.2 0.92± 0.02 0.01± 0.01

3.4 500 300 N −7.3± 0.2 0.67± 0.02 0.01± 0.01

4.0 200 150 I −4.0± 0.2 0.10± 0.02 0.01± 0.01
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Fig. 1. Average energy 〈U∗〉 (1(a)) and average orientational order parameter 〈P2〉 (1(b)) plotted
against the dimensionless temperature T ∗ for the system of particles with central transverse
dipoles.

the Ewald technique mainly to check the results.

The runs were started from dipole-less equilibrium configurations and equili-

brated with transverse dipolar interactions switched on for over 200 000 cycles with

production runs of 150–200 000 cycles. We report in Table 1 the main results for

the energy 〈U∗〉 = 〈U〉/ε0 and the molecular ẑi axis order parameter 〈P2〉 = 〈R20,0〉
and the biaxial order parameter 〈R22,2〉 (defined and computed as in Ref. 14) for the

different phases observed: isotropic (I), nematic (N), smectic A (SA) and smectic

B (SB). The order parameter 〈P2〉, plotted in Fig. 1(b), shows the familiar decrease

with increasing temperature. The rod with a transverse dipole is a biaxial particle

and we investigated the existence of long-range biaxial order. We find that in all

the cases studied, the biaxial order parameter 〈R22,2〉 is essentially zero (as shown

in Table 1). We shall now consider the simulation results in some detail.

3. Results

The system presents an isotropic, nematic and smectic phase as shown by the radial

distribution g0(r) = 〈δ(r − rij)〉ij/(4 πr2ρ) (see Fig. 2) and by the density along

the director g(z) = 〈δ(z − zij)〉ij/(πR2ρ) (see Fig. 3), where zij = rij cosβrij is
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Fig. 2. Radial distribution g0(r∗) for the system of rods with central transverse dipoles at the
temperatures T ∗ = 2.0 (SB) and 2.8 (SA).
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Fig. 3. Density along the director g(z∗) for the system of rods with central transverse dipoles at
the temperatures T ∗ = 2.0 (SB) and 2.8 (SA).

measured with respect to the director frame and R is the radius of the cylindrical

sampling region.

The radial distribution in particular shows a sharp peak at r∗ = 1, corresponding

to the preferred side-by-side nearest-neighbor configuration. At the lowest tempera-

tures (T ∗ = 1.6 and 2.0) the radial distribution shows also a splitting of the second

peak characteristic of a hexagonal order in the plane and thus of a smectic B-type

ordering, at least over the distances amenable to our sample size (cf. Ref. 3).

The density profile across the sample (Fig. 3) shows a clear smectic periodicity

at T ∗ = 2.0 and 2.8. The peaks are essentially centered at multiples of the molecular

length σe, showing that very little interdigitation of the layers exists in this case.

The correlation between molecular axes can be represented, in general, by av-

erages of rotational functions SL1,L2,L3m1,m2
15 as a function of separation r. In Fig. 4,

we show the orientational correlation function

Re[S2,2,02,2 (r)] =
1

4
√
5
〈δ(rij − r) [(x̂i · x̂j)2 − (x̂i · ŷj)2 − (ŷi · x̂j)2

+(ŷi · ŷj)2 − 2(x̂i · ŷj)(ŷi · x̂j)− 2(x̂i · x̂j)(ŷi · ŷj)]〉ij . (4)

The limiting value for r →∞ of this correlation is the combination of biaxial order

parameters [〈R20,2〉2 + 2〈R22,2〉2]
√
5, where 〈R20,2〉 is also defined in Ref. 14. We see
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Fig. 4. Orientational correlation function Re[S2,2,02,2 (r∗)] for the system of rods with central trans-
verse dipoles at the temperatures T ∗ = 2.0 (SB) and 2.8 (SA).

that, apart from the positional order and the long-range orientational order (see

Table 1), the system does not give rise to a biaxial structure; in other words the

short axes of the molecules are only ordered at short, but not at long range, as we

have already mentioned before.

In order to investigate the correlation functions between molecular dipoles, we

calculate

S1,1,01,±1(r) =
1

2
√
3
〈δ(rij − r)[∓x̂i · x̂j + ŷi · ŷj + i(x̂i · ŷj ± ŷi · x̂j)]〉ij . (5)

In practice, we find it more convenient here to plot a linear combination of these

invariants, giving the average scalar product between the transverse components of

the dipole of a molecule i chosen as the origin and that of any molecule j found at

a distance r, that is

〈δ(rij − r)[x̂i · x̂j ]〉ij = −
√
3 Re[S1,1,01,1 (r)− S1,1,01,−1 (r)] . (6)

At the lowest temperatures, the molecules are, as we have seen, well ordered in

layers and the dipoles are essentially distributed in the layer planes. In Fig. 5 we

see that in the smectic phases, the dipoles whithin the first two nearest-neighbor
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Fig. 5. Dipolar pair correlation function 〈δ(r∗−r∗ij)[x̂i · x̂j ]〉ij for the system of rods with central
transverse dipoles at dimensionless temperatures T ∗ = 2.0 (SB), and 2.8 (SA).
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Fig. 6. The dipolar organization in a smectic layer for the central transverse dipole system at
T ∗ = 2.0 (SB) and T ∗ = 2.8 (SA). Chains of dipoles are visualized using a gray shading. Two
dipoles µi, µj lying on the same smectic layer are considered “chained” whenever µ̂i · µ̂j ≥ 0.3
and r∗d ≤ 1.5.

coordination shells are, on average, parallel. A snapshot of dipole configurations,

presented in Fig. 6, is rather illuminating in this respect and shows chains and rings

of dipoles, visualized here with a gray shading as a guide to the eye, as already

discovered by Jackson et al.8 for their dipolar spherocylinders. These structures

were not reported by Gwóźdź et al.,9 possibly due to the limited size of their
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system. In any case, the dipolar chains do not seem to be just a feature of the hard

spherocylinders model in Ref. 8, but are present also in the attractive-repulsive

Gay–Berne systems.

4. Discussion and Conclusions

We have simulated in detail a system of rod-like Gay–Berne particles containing a

permanent point dipole perpendicular to the long axis and located in the center of

the molecule. The system shows enhanced layering with little interdigitation and

formation of chains and rings of dipoles in the layer plane.
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