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We have studied a system of discotic particles with a central transverse dipole using Monte Carlo (MC)
computer simulations at constant pressure. We have investigated several temperatures corresponding to
nematic and columnar liquid crystal phases and determined the molecular and dipolar organizations. Low
temperature columnar phases are characterized by local biaxial ordering of dipoles, even if the system is on the
whole uniaxial. However, simulations in the presence of a transverse Ðeld for di†erent Ðeld and dipole
strengths show that the system has a large susceptibility and easily becomes biaxial, making it potentially
interesting for switching applications. An explicit formulation for the susceptibility in terms of biaxial
invariants is derived.

1 Introduction
Thermotropic discotic mesogens are now available with a
variety of chemical structures.1h8 They all share the capability
of self organizing when cooling from their isotropic phase and
of forming columnar aggregates. These aggregates may consist
of only a few molecules with the phase formed missing long
range positional order, corresponding to an ordering of a
nematic type. However, and perhaps more interestingly,
columnar phases with long range stacks of mesogenic mol-
ecules can also be obtained, typically at lower temperatures.
The columns themselves can have a regular arrangement, e.g.
rectangular or hexagonal, in the plane perpendicular to the
column. These structures are particularly interesting since the
molecules forming the columns are on one hand extremely
ordered (typical order parameters but at theSP2T B 0.8È0.9),
same time they can rotate around the column axis without
disrupting the stacking. Thus, even allowing for the possibility
of some chain entanglement in mesogens where the core is
surrounded by long tails, the motion around the axis might be
sufficiently easy to allow for some useful switching by the
action of a Ðeld transversal to the column axis and coupling
e.g. to a dipole in the molecular plane.

Computer simulations of mesogen models provide an
attractive way of investigating this possibility. In particular a
system of GayÈBerne (GB)9 discs or rather oblate ellipsoids
has been shown to produce a rectangular columnar
phase10h12 or a hexagonal phase13 according to the
parametrization14 adopted.

The e†ect of an axial point dipole has been investigated by
us previously,13 while a di†use axial dipole ring has been
studied by Patey et al.15 and cut-spheres with axial dipole by
Weis et al.16 However, no simulations on discotic particles
with a transverse dipole are available, to the best of our know-
ledge.

Here we investigate a system of GayÈBerne disc-like par-
ticles with an added transverse dipole without and with an
external Ðeld. In particular we examine Ðrst the phases
obtained by performing constant volume (MC-NVT) and con-
stant pressure (MC-NPT) Monte Carlo simulations17 on a
system of N \ 1000 particles. We then select a state point

where the system is columnar and we investigate the suscepti-
bility of a larger system of N \ 8000 particles as well as the
biaxial order induced by applying a transversal external Ðeld.

2 The model and its simulation
We consider a system of uniaxial oblate ellipsoidal particles
with axes and with and with an embeddedpe ps , pe \ pstransversal electric point dipole placed in the centre.13 The
pair potential is the sum of a GayÈBerne (GB)9h14 and a
dipoleÈdipole term: The GayÈU
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zation used in ref. 13 related to that used by Emerson et al. in
ref. 10 and based on the dimensions of a triphenylene core,
namely : shape anisotropy interaction anisot-pe/ps\ 0.345,
ropy but using instead energy parameters k \ 1 andee/es \ 5,
l\ 3 as in refs. 13 and 14. and are used as molecularps esunits of length and energy. The cuto† radius adopted is rc \

We have shown elsewhere that this discotic GB system,1.4ps .both without dipole18 and with an axial dipole,13 gives a dis-
cotic nematic and hexagonal columnar phase. The dipolar
energy term is given by
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used reduced dipole moments k* \ 0.8 and k* \ 0.4 which,
when considering for instance a molecular diameter of ps\and an energy term erg, correspond9.27 A� , es \ 0.49] 10~14
to about 1.6 D and 0.8 D.¤

We have Ðrst performed extensive preliminary canonical
ensemble (constant number of molecules N, volume V and
temperature T )17 Monte Carlo simulations of a system of
N \ 1000 interacting particles enclosed in a cubic box with
periodic boundary conditions at a reduced density o* 4

We have studied the system at a series of tem-Nps3/V \ 2.5.
peratures (where is the Boltzmann constant)T * 4 kBT /es kBÐnding isotropic, nematic and columnar phases with di†erent
degrees of alignment (see Table 1 and Fig. 1).

The MC runs were started from well equilibrated conÐgu-
rations of the dipole-less system.11,13 The starting orientation

Fig. 1 Average total energy per particle SU
ij
*T \ SU

ij
GB*T] SU

ij
d*T

(top), and orientational order parameter (bottom) forSR002 T 4 SP2TMC-NVT simulations at o* \ 2.5 of a system of N \ 1000 GB discs
with transverse dipole k* \ 0.8 as a function of temperature T *.

Table 1 Results from MC-NVT simulation at density o* \ 2.5 of a
system of N \ 1000 GB discotic molecules with transversal dipole

with module k* \ 0.8. We report average total energy per parti-l
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and dielectric constant at temperatures T * corre-SR002 T 4 SP2T e6
sponding to isotropic (I), nematic (N) and columnar phases as(Colh)indicated. Additional biaxial order parameters andSR022 T, SR202 T

are zero, within the simulation error bars, at all temperaturesSR222 T
studied

T * Phase SU
ij
*T SR002 T e6

3.5 Colh [35.3 ^ 0.2 0.93^ 0.01 1.2^ 0.1
3.8 Colh [32.3 ^ 0.2 0.92^ 0.01 1.6^ 0.1
3.9 Colh [30.0 ^ 0.3 0.92^ 0.01 1.6^ 0.1
4.0 Colh [29.4 ^ 0.2 0.92^ 0.01 1.5^ 0.1
4.5 Colh [26.9 ^ 0.2 0.91^ 0.01 1.7^ 0.1
5.0 Colh [25.0 ^ 0.2 0.89^ 0.01 1.8^ 0.1
6.0 N [18.2 ^ 0.3 0.77^ 0.01 1.5^ 0.2
7.0 N [15.9 ^ 0.3 0.71^ 0.01 2.0^ 0.2
9.0 N [11.8 ^ 0.3 0.49^ 0.02 1.8^ 0.2
10.0 N [9.4 ^ 0.3 0.39^ 0.02 1.8^ 0.2
14.0 I [4.8 ^ 0.3 0.12^ 0.02 1.8^ 0.2

¤ 1 D B 3.335 64] 10~30 C m.

of the dipole in the molecular plane was chosen at random to
ensure a non-ferroelectric initial phase Each(SP1T \ 0).
sample was then equilibrated from a minimum of 200 kcycles
to a maximum of 300 kcycles, where a cycle corresponds to N
attempted moves. The production runs were usually 200
kcycles long. In order to speed up the equilibration process we
have allowed the dipoles to Ñip 180¡ around the disc axis.zü

iIn practice Ñip moves are attempted with probability 0.2.
The long range dipolar potential contributions were evalu-

ated using the Ewald summation technique with tin foil
boundary conditions19 employing the same parameters we
have used in refs. 13 and 20.

We have found, as in previous studies,10 that at sufficiently
low temperatures, e.g. here T * \ 3.5, the system develops
holes. This indicates a difficulty of the system to equilibrate
under the constraint of a Ðxed box size and shape. Constant
pressure (MC-NPT)17 simulations were thus run in the
columnar phase at dimensionless pressure P* \ Pps3/es \ 5
and selected temperature T * \ 2.0, 2.5, 3.0, 3.5 allowing for
box shape changes, successfully eliminating residual holes. In
this case the dipolar energy is computed with the reaction Ðeld
technique.21h24 The dielectric constant of the surrounding
medium was and the cuto† distance Thiserf\ 1.5 rrf\ 3ps .technique is in principle less reliable than Ewald summation
but considerably faster. In all cases results from reaction Ðeld
runs were fully consistent with the Ewald ones, in agreement
with the Ðndings of other authors and ourselves for large
mesogenic dipolar systems.22h24

Additional NPT simulations for larger samples of N \ 8000
particles were run on a Cray T3E using up to 128 processors
and on a IBM SP2 in order to further check the results. We
implemented a replicated data structure, where each of the
processors calculates the energy contribution of a subset of
particles.

3 Results and discussion
Starting from highest temperature studied, the Ðrst obser-
vation is that the system is isotropic. Although this is quite
predictable, checking that the system is isotropic is important
to make sure that no a priori bias exists, towards some form of
organized structure. As the temperature is reduced, orienta-
tional order develops and molecules organize in a nematic
and then by further lowering T * in a columnar hexagonal
phase. Representative conÐgurations are shown in Fig. 2.

In Table 1 we report the most important thermodynamic
observables for the temperatures studied. The local director
frame with axes and and the orientational orderXŒ , YŒ ZŒ 4 nü
parameter were calculated as described in ref.SP2T 4 SR002 T,
25. Our mesogenic particles with GB and dipolar interactions
along two perpendicular (i.e. and axes have biaxial sym-xü zü )
metry. Thus, we have also calculated biaxial order parameters,
in particular the average biaxially symmetrized Wigner rota-
tion matrices whereSR

mn
L T,25,26

R
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L* ). (3)

The biaxial order parameter and the additional onesSR222 T,
and were zero, within our error level, at all tem-SR022 T SR202 T

peratures studied for the system in the absence of an external
Ðeld. The dielectric constant (ref. 19) shows that the system ise6
not ferroelectric.

We now describe the structures adopted by the sample at
the di†erent temperatures and in particular those correspond-
ing to the snapshots in Fig. 2.

We examine Ðrst the distribution of particle centres as a
function of the molecular separation r, as given by the radial
correlation function and itsg0(r) \ 1/(4pr2o)Sd(r[ r

ij
)T

ijanisotropies. The for the low temperature columnarg0(r)phase (T * \ 3.5), shown in Fig. 3, presents several well deÐned
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Fig. 2 Snapshots of MC-NVT conÐgurations (side view) for systems of N \ 1000 GB discs with transverse dipole k* \ 0.8 at density o* \ 2.5
and temperatures T * \ 3.5 (columnar, left), 4.5 (columnar, middle), and 7.0 (nematic, right). The red and cyan ““patches ÏÏ label the head and tail of
the molecular dipoles. The column axis deÐnes the direction.ZŒ

peaks related to the molecular organization of this mesophase.
The Ðrst two maxima correspond to the Ðrst two neighbour-
ing pairs within the same column (face-to-face). The next
hump is given by the superposition of two maxima due to
adjacent pairs of molecules belonging to di†erent columns
(side-by-side) and their position and is(r/ps B 0.9 r/psB 1.1)
typical of a hexagonal arrangement of interdigitated columns,
also found in the axial polar13 and apolar discotic systems.
Notice, however, that at higher distances r the position of the
peaks corresponds to molecules belonging either to the same
or to di†erent columns and a simple assignment is difficult
and can be misleading. The hexagonal ordering is clearly
shown in the snap-shots of our MC samples taken along the
director (shown later in Fig. 8). Less structured features areZŒ
found in for the T * \ 4.5 sample, the two intra-columng0(r)peaks are less sharply deÐned and the Ðngerprint of the hex-
agonal ordering is not visible. At this temperature the
columns are still arranged in a hexagonal fashion but without
interdigitation. At T * \ 7.0 the system forms a nematic phase
and the radial correlation function for the nematic phase

shows no positional ordering : side-by-side conÐgurations are
approximately as frequent as face-to-face.

Further details on phase structure can be obtained by
studying the second rank anisotropy g2`(r) \ Sd(r [ r

ij
)P2(cos

where is the angle between the intermolecular vectorb
ij
)T

ij
b
ijand the phase director (Fig. 4). At the temperaturesZŒ 14,27

corresponding to the columnar phases the anisotropy exhibits
a rich structure even for high molecular separations. For these
temperatures (T * \ 3.5, 4.5) the columns are well deÐned and
they extend across the whole MC sample. A closer look at the
curves shows two positive maxima for the intra-column neigh-
bouring pairs (intermolecular vector parallel to the director)
and a third negative peak corresponding to side-by-side mol-
ecules belonging to adjacent columns (intermolecular vector
perpendicular to the director). In the nematic (T * \ 7.0) phase
the face-to-face clustering of particles is practically negligible
except for Ðrst neighbours.

Molecular orientational correlations, particularly those
reÑecting dipolar, and local biaxial ordering can be studied
considering a suitable set of Stone invariants28,29 averaged

Fig. 3 Radial correlation function for a system of N \ 1000 dipolar GB discs with transverse dipole k* \ 0.8 at o* \ 2.5 and temperaturesg0(r)T * \ 3.5 (left), 4.5 (middle) and 7.0 (right).

Fig. 4 Second rank anisotropy of the pair correlation See Fig. 3 for details.g2`(r).
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Fig. 5 Orientational correlation function See Fig. 3 for details.S11110(r).

with respect to the pair distribution function P(r, u
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r
.13 S11110(r), S00220(r),that we now introduce in turn. We start with the ÐrstS22220(r),rank invariant (the real part is shown)
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that depends on the biaxial orientational correlations between
dipoles as a function of the molecular separation r andl
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ithat we report in Fig. 5. At temperature T * \ 3.5 this function
presents a well deÐned positive peak followed by a second one
of opposite sign. This corresponds to an intra-column pairing
of neighbouring dipoles with anti-parallel dipole moments.
This arrangement, if propagated, could lead to phase
biaxiality. However, as already mentioned, the long range
phase biaxiality measured by turned out to be zero. ASR222 T
similar short range structure can be found at the intermediate
temperature T * \ 4.5 but the dipoleÈdipole correlation van-
ishes after the second intra-column neigbours and the overall
phase biaxiality is again practically absent (cf. Table 1). In the
nematic phase (T * \ 7.0) the anti-ferroelectric arrangement is
even more short ranged and the phase is on the whole uni-
axial.

As for second rank invariants we concentrate on
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We have reported the explicit expression for the invariants
using a cartesian representation in terms of the molecular
versor axes and However, to establish a relationxü

i
, yü

i
zü
i
.

between the long molecular distance values of the invariants
and the other parameters we recall that in general these
invariant functions are deÐned as linear combinations of pro-
ducts of Wigner matrices.26,28,29 The average behaviour for
large separations is determined by the fact that the pairr >psdistribution becomes a product of singlet orientational dis-
tributions, which implies that the long distance values can be
written in terms of products of orientational order parameters

S
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m, n12 TSR
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where C(220 ; m, [m) are ClebschÈGordan coefficients.26 In
particular we have
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In Fig. 6 we report the rotational invariants andS00220(r)for the temperatures T * \ 3.5, 4.5 and 7.0. The lowestS22220(r)temperature would seem to indicate a small biaxial order, but
the values are essentially within the threshold error level of the
simulation, conÐrming once more the uniaxial character of the
phase.

4 External Ðeld e†ects

As we have seen in previous sections the systems studied show
local but not overall biaxial structuring in the absence of a
symmetry breaking Ðeld. On the other hand what is poten-
tially interesting also for applications is the possibility of
switching from uniaxial to biaxial following an external stimu-
lus. Thus, in a second set of simulations we have studied the
e†ect on the molecular and dipolar organization caused by
the application of an external transversal Ðeld. The Ðeld coup-
ling contribution for each molecule can be considered as the

Fig. 6 Orientational correlation functions (solid line) and (dashed line). See Fig. 3 for details.S00220(r) S22220(r)
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Ðrst anisotropic and non-polar term of a general expansion of
the interaction energy in powers of Ðeld strength E* \

(ref. 30)(ps3/es)1@2E

U
i
f*\ [jD002 (xü

i
É XŒ ), (10)

where the Ðeld is applied transversally, along the directionXŒ
of the director frame. We envisage a situation where an elec-
tric Ðeld E couples with the molecular dipole through a dielec-
tric mechanism and where the unperturbed state is not polar
overall, with j \ k*2E*2/3 is the ÐeldÈdipole coupling
strength.30,31

We have considered Ðrst a system of N \ 1000 particles in
the isobaricÈisothermal (NPT) ensemble enclosed in a box
with periodic boundary conditions and dimensionless pressure
P* \ 5. We have chosen to concentrate on the state point
temperature T * \ 3.5, and we have performed a set of simula-
tions for various values of the applied Ðeld and for two di†er-
ent values of the dipole moment k* \ 0.8 and k* \ 0.4. For
k B 1.6 D (i.e. k* \ 0.8), j \ 1 corresponds to an electric Ðeld
EB 160 V lm~1. Lower Ðelds could be achieved with strong-
er molecular dipoles.

Then we have repeated the simulation with the stronger
dipole moment for a system with a large number of particles
(N \ 8000).

In Table 2 we report the equilibrium results for the energy
and the two main order parameters. It is immediately appar-
ent that when the transversal Ðeld is applied, the phase
becomes biaxial (see Fig. 7 and also the conÐgurations in Fig.
8) and that the induced biaxiality changes quite considerably
when the dipole moment is increased from k* \ 0.4 to
k* \ 0.8, as shown in Fig. 7.

We notice that this symmetry change does not involve
much of a change in the structural organization of the phase
and the principal order parameter in Table 2 is practi-SR002 T
cally una†ected by the external Ðeld. Indeed, in Fig. 9 we see
that the radial distribution is essentially the same also for the
strongest applied Ðeld, where the contribution of the Ðeld term

Fig. 7 Biaxial order parameter (top) and Ðeld interactionSR222 T
energy per molecule (bottom) as a function of the ÐeldÈdipoleSU

i
f*T

coupling strength j for a system of N \ 1000 dipolar GB discs as a
function of the ÐeldÈdipole coupling strength j \ k*2E*2/3 at pres-
sure P* \ 5, temperature T * \ 3.5 and for transverse dipole moments
k* \ 0.8 (circles) and 0.4 (squares).

to the total energy (Table 2) is far from negligible. Also the
plot of in Fig. 10 shows similar proÐles for each valueS11110(r)of j, while (plotted in Fig. 11) has not zero limitingS22220(r)values for large intermolecular separations, in agreement with
eqn. (9). It is thus reasonable to treat the e†ect of the trans-
verse Ðeld in terms of linear response theory17,32h34 and we
now proceed to calculating this response property establishing
Ðrst its formulation in molecular terms.

Table 2 Results of MC-NPT simulations in the presence of an external transversal Ðeld at pressure P* \ 5 and temperature T * \ 3.5 for a
columnar phase with N \ 1000 GB discotic molecules with transversal dipole : k* \ 0.8 (2a), and k* \ 0.4 (2b), and of N \ 8000 with k* \ 0.8
(2c). The constant j \ k*2E*2/3 deÐnes the ÐeldÈdipole coupling strength. We report the average GayÈBerne dipolar and ÐeldSU

ij
GB*T, SU

ij
d*T

energies per particle and the orientational order parameters and Additional biaxial order parameters and areSU
i
f*T SR002 T SR222 T. SR022 T SR202 T

zero, within the simulation error bars, at all applied Ðelds

j SU
ij
GB*T SU

ij
d*T SU

i
f*T SR002 T SR222 T

2a
0.0 [31.9^ 0.2 [6.0^ 0.1 È 0.96^ 0.01 0.02^ 0.01
0.5 [32.0^ 0.2 [6.0^ 0.1 [0.15^ 0.05 0.96^ 0.01 0.05^ 0.01
1.0 [32.1^ 0.2 [6.1^ 0.1 [0.40^ 0.05 0.97^ 0.01 0.10^ 0.01
2.0 [32.2^ 0.2 [6.2^ 0.1 [1.0^ 0.1 0.97^ 0.01 0.18^ 0.01
3.0 [32.5^ 0.2 [6.5^ 0.1 [1.8^ 0.1 0.97^ 0.01 0.24^ 0.01
4.0 [32.5^ 0.2 [6.7^ 0.1 [2.7^ 0.1 0.97^ 0.01 0.29^ 0.01
5.0 [32.6^ 0.2 [6.8^ 0.1 [3.7^ 0.1 0.97^ 0.01 0.33^ 0.01
6.0 [32.8^ 0.2 [7.0^ 0.1 [4.6^ 0.1 0.97^ 0.01 0.35^ 0.01
7.0 [33.2^ 0.2 [7.3^ 0.1 [5.6^ 0.1 0.97^ 0.01 0.37^ 0.01

2b
0.0 [26.4^ 0.2 [0.5^ 0.1 È 0.93^ 0.01 0.01^ 0.01
1.0 [26.8^ 0.2 [0.5^ 0.1 [0.07^ 0.05 0.93^ 0.01 0.01^ 0.01
2.0 [26.4^ 0.2 [0.5^ 0.1 [0.15^ 0.05 0.93^ 0.01 0.03^ 0.01
3.0 [26.7^ 0.2 [0.5^ 0.1 [0.22^ 0.05 0.93^ 0.01 0.04^ 0.01
4.0 [26.6^ 0.2 [0.5^ 0.1 [0.31^ 0.05 0.93^ 0.01 0.06^ 0.01
5.0 [26.8^ 0.2 [0.5^ 0.1 [0.42^ 0.05 0.93^ 0.01 0.07^ 0.01
6.0 [26.8^ 0.2 [0.5^ 0.1 [0.53^ 0.05 0.93^ 0.01 0.08^ 0.01

2c
0.0 [32.6^ 0.2 [6.1^ 0.1 È 0.97^ 0.01 0.01^ 0.01
1.0 [32.7^ 0.2 [6.1^ 0.1 [0.40^ 0.05 0.97^ 0.01 0.10^ 0.01
2.0 [32.8^ 0.2 [6.3^ 0.1 [1.0^ 0.1 0.97^ 0.01 0.18^ 0.01
3.0 [32.9^ 0.2 [6.5^ 0.1 [1.8^ 0.1 0.97^ 0.01 0.24^ 0.01
4.0 [33.1^ .02 [6.8^ 0.1 [2.7^ 0.1 0.97^ 0.01 0.29^ 0.01
5.0 [33.2^ 0.2 [6.9^ 0.1 [3.7^ 0.1 0.97^ 0.01 0.33^ 0.01

Phys. Chem. Chem. Phys., 2000, 2, 2933È2942 2937



Fig. 8 Snapshots of MC-NPT conÐgurations (side and top views) for columnar systems (aligned along of N \ 8000 dipolar GB discs withZŒ )
transverse dipole k* \ 0.8 at pressure P* \ 5, temperature T * \ 3.5 and external transversal Ðeld along for three values of the ÐeldÈXŒ ,
dipole coupling strength j \ 0 (top), 3 (middle), and 5 (bottom). The red and cyan ““patches ÏÏ label head and tail of molecular dipoles.

Fig. 9 Radial correlation function for a system of N \ 8000 dipolar GB discs with transverse dipole k* \ 0.8 at pressure P* \ 5, tem-g0(r)perature T * \ 3.5 and three values of the ÐeldÈdipole coupling strength j \ 0 (left), 3 (middle), and 5 (right).

2938 Phys. Chem. Chem. Phys., 2000, 2, 2933È2942



Fig. 10 Orientational correlation function See Fig. 9 for details.S11110(r).

4.1 Linear Ðeld susceptibility

Here we derive an expression for the Ðeld susceptivity refer-
ring in particular to a columnar mesophase formed by discotic
particles with transversal dipole moment and an external Ðeld
orthogonal to the principal phase director The unperturbedZŒ .
system has total energy given by the Hamiltonian
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N~1 ;
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N
U
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where The mesophase symmetry of theU
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\ U
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unperturbed state is and it reduces to when the ÐeldD=h D2h(cf. eqn. (12)) is turned on. Using a laboratory/director frame
L whose axis is parallel to the column alignment axis, theZŒ
Hamiltonian describing the interaction with the external
transversal Ðeld aligned with respect to (the Ðeld frame F) isXŒ

Hf \ [
k2E2
3es

;
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N
D002 (x

i
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k2E2
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/(MuN), (12)

where stands for the rotation from the Ðeld frame to ax
i
^ F

molecular frame with principal axis The symbol MuN rep-x
i

xü
i
.

resents the set of all 3N Euler26 angles deÐning the molecular
orientations (i.e. the molecular fameu

i
M

i
).

The average coupling term describing the overall inter-
action is

S/T \
1

Z
P

MdrNMduN/(MuN)exp[[(H]Hf)/kBT ], (13)

where MdrN and MduN represent the integration over all 3N
positional MrN and 3N orientational MuN variables, while Z\

is the conÐgurational inte-/ MdrNMduNexp[[(H]Hf)/kBT ]
gral.

Using linear response theory,17,32h34 the susceptibility tos
Mthe external transversal Ðeld is estimated as

s
M

\
1

N
CdS/T

dE2
D
E/0

\
CdSD002 (x

i
^ F)T

dE2
D
E/0

\
k2

3Nes kBT
[S/2T [ S/T2]

E/0

\
k2

3es kBT
[(N [ 1)c

ij
] c

ii
], (14)

where

c
ij
4 [SD002 (x

i
^ F)D002 (x

j
^ F)T [ SD002 (x

i
^ F)T2] (15)

and

c
ii
4 S[D002 (x

i
^ F)]2T [ SD002 (x

i
^ F)T2 (16)

and we omit the E\ 0 subscript since no confusion can arise.
We have computed the coefficients and from the MCc

ij
c
iisimulations results both from eqns. (15) and (16) and also by

integration over the intermolecular distance r of appropriate
orientational correlation functions (see Appendices 1 and 2 for
details). Considering the e†ective phase and molecular
biaxiality symmetry), we expand the coefficients and(D2h c

ij
c
iiin terms of a set of symmetrized biaxial invariants R

m1m2mr‰ n1n2
L1L2Lr

resulting from the successive application of symmetry oper-
ators and to the product of three Wigner matricesPŒ MolD2h PŒ LabD2h

(see Appendix 2, eqn. (27)). ClearlyD
m1n1
L1R (u1)Dm2n2

L2R (u2)Dmr0LrR (u
r
)

this expansion is valid only for non-ferroelectric symmetry.
Thus it is similar in spirit to the expansion of the singlet dis-
tribution in even Legendre polynomials, even if nematogen
particles are polar. We obtain after some algebra and integra-
tion over the pair distribution function

c
ij
\

1

16
SR000‰ 00220 T [

J3

4J2
SR000‰ 20220 T ]

3

8
SR000‰ 22220 T

[
J3

4J2
SR200‰ 00220 T ]

3

4
SR200‰ 02220 T

]
3

8
SR220‰ 00220 T ]

3

4
SR200‰ 20220 T

[
3J3

2J2
SR200‰ 22220 T [

3J3

2J2
SR220‰ 20220 T ]

9

4
SR220‰ 22220 T

[
C1
4

SR002 T [
S3

8
SR202 T [

S3

8
SR022 T ]

3

2
SR222 T

D2
,

(17)

Fig. 11 Orientational correlation function See Fig. 9 for details.S22220(r).
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Fig. 12 Transversal order parameter (top) and averageSD002 (xü É XŒ )T
Ðeld energy per particle (bottom) computed directly from theSU

i
f*T

MC-NPT simulations of N \ 1000 GB discs with transverse dipole
k* \ 0.8 at pressure P* \ 5, temperature T * \ 3.5 and di†erent ÐeldÈ
dipole coupling strengths j (circles, cf. Table 2) and from the linear
response susceptibility of an unperturbed (j \ 0) system (continuous
curve, cf. eqns. (19) and (20)) with s

M
* \ (2.6 ^ 0.3) ] 10~2.

and

c
ii
\

1

5
]

1

14
[SR002 T [ J6 SR022 T [ J6 SR202 T ] 6SR222 T]

]
9

1120
[9SR004 T [ 6J10 SR024 T ] 3J70 SR044 T

[ 6J10 SR204 T ] 40SR224 T [ 20J7 SR2, 44 T

] 3J70 SR4, 04 T [ 20J7 SR4, 24 T ] 70SR4, 44 T]

[
C1
4

SR002 T [
S3

8
SR202 T [

S3

8
SR022 T ]

3

2
SR222 T

D2
,

(18)

where are the symmetrized Wigner matrices alreadyR
mn
L

deÐned in eqn. (3).
The dimensionless susceptibility is a non-s

M
* \ (es/ps3)sMnegative quantity ranging between 0 and i.e. theNk*2c

ii
/3T *,

limiting values for a system of particles whose orientational
pair distribution is either completely uncorrelated or com-
pletely correlated. Considering GB discs with transverse
dipole moment k* \ 0.8 at pressure P* \ 5 and temperature
T * \ 3.5, we have found for the susceptibilities of two systems
of N \ 1000 and N \ 8000 particles the same value s

M
* \ (2.6

both by direct computation of eqns. (15) and^ 0.3)] 10~2,
(16) and by eqns. (17) and (18) after integration of the orienta-
tional correlation functions of Appendix 2.

Once the susceptibility is known, we can get for each ÐeldÈ
dipole coupling strength j, the transversal order parameter

É ThusSD002 (xü XŒ )Tj .

SD002 (xü É XŒ )Tj [ SD002 (xü É XŒ )Tj/0\
3js

M
*

k*2
, (19)

and then estimate the Ðeld coupling term from theSU
i
f*Tjcorresponding values in the absence of Ðeld

SU
i
f*Tj \ [jSD002 (xü É XŒ )Tj . (20)

In Fig. 12 we report as functions of the parameter j the esti-
mated values from linear response theory of these two quan-
tities compared with the ones obtained directly from
simulations in the presence of a Ðeld. We can see that at least
at low Ðelds these results are fully consistent, thus conÐrming
the applicability of the linear response equations.

It is worth noticing that the molecular expression we have
established could be useful in analyzing experimental results
for real columnar systems with a transverse dipole in a trans-
versal Ðeld. Indeed, eqns. (14)È(18) provide a link between an
observable susceptibility and single molecule and pairs

Mcorrelation properties. As an example of that, we show in Figs.
(13) and (14) the biaxial invariants andR200‰ 20220 (r) R220‰ 22220 (r),
that, at least in the present case, are the dominant biaxial
terms in eqn. (17).

5 Conclusions
We have shown that a system of attractiveÈrepulsive GayÈ
Berne discotic particles with an embedded transverse electric

Fig. 13 Transversal orientational correlation function See Fig. 9 for details.R200‰ 20220 (r).

Fig. 14 Transversal orientational correlation function See Fig. 9 for details.R220‰ 22220 (r).
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dipole can form nematic and hexagonal columnar meso-
phases. In the absence of a Ðeld the system is uniaxial,
although it presents a short range biaxial structure. At low
temperatures, the columnar phase readily becomes biaxial
when a transversal Ðeld is applied ; the biaxiality increases
with the Ðeld strength. The high susceptibility observed makes
this type of polar discotics potentially interesting for uniaxialÈ
biaxial switching applications.
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Appendix 1
We derive here some intermediate expression for the computa-
tion of the two particle averages and (eqns. (17) and (18))c

ij
c
iirequired in the evaluation of the susceptibility according to

the linear response theory.17,32h34 The rotation matrices from
the Ðeld to the molecular frame can be rewritten as ax

isequence of three rotations35 transforming Ðrst from the Ðeld
F to the laboratory L, then from the laboratory L to the
molecular frames and Ðnally from the molecular to theM

i
M

imolecular framex
i

D002 (x
i
^ F)\ ;

p, q
D0p2 (L^ F)D

pq
2 (M

i
^ L)D

q02 (x
i
^ M

i
)

\ ;
p, q

a
p
b
q
D

pq
2 (u

i
), (21)

where we have used and introducedD
mn
L (u

i
)4 D

mn
L (M

i
^ L),

the shorthand

a
p
\ D0p2 (L^ F)4 D0p2 (0, [p/2, 0) \ d0p2 ([p/2), (22)

b
q
\ D

q02 (x
i
^ M

i
)4 D

q02 (0, p/2, 0) \ d
q02 (p/2). (23)

The distinct particle terms can be expressed asc
ij

c
ij
\ SD002 (x

i
^ F)D002 (x

j
^ F)T [ SD002 (x

i
^ F)T2

\ ;
pi, qi, pj, qj

a
pi

b
qi

a
pj

b
qj
SD

pi
2

qi
(u

i
)D

pj
2

qj
(u

j
)T

[
C

;
pi, qi

a
pi

b
qi
SD

pi
2
qi
(u

i
)T
D2

, (24)

while the self particle term is insteadc
ii

c
ii
\ S[D002 (x

i
^ F)]2T [ SD002 (x

i
^ F)T2

\ ;
pi, qi, pj, qj

a
pi

b
qi

a
pj

b
qj
SD

pi
2
qi
(u

i
)D

pj
2
qj
(u

i
)T

[
C

;
pi, qi

a
pi

b
qi
SD

pi
2
qi
(u

i
)T
D2

\ ;
pi, qi, pj, qj

a
pi

b
qi

a
pj

b
qj

;
L

C(22L ; p
i
p
j
)

] C(22L ; q
i
q
j
)SD

pi`pj
L , qi`qj

(u
i
)T

[
C

;
pi, qi

a
pi

b
qi
SD

pi
2
qi
(u

i
)T
D2

, (25)

where we have taken advantage of the ClebschÈGordan coup-
ling rule for Wigner matrices26,36

D
piqi
Li (u)D

pjqj
Lj (u)

\ ;
L/@Li~Lj@

Li`Lj
C(L

i
L
j
L ; p

i
p
j
)C(L

i
L
j
L ; q

i
q
j
)D

pi
L
`pj, qi`qj

(u).

(26)

Appendix 2

The susceptibility components and (eqns. (17) and (18))c
ii

c
ijcan be evaluated by integration over the intermolecular dis-

tance r of certain orientational correlation functions, which in
turn are the expansion coefficients of the pair distribution
function P(r, in a set of a suitably deÐned set ofu1, u2 , u

r
)

biaxial invariants. To build these invariants we generalize the
procedure used for Stone invariants, derived in refs. 28 and 29,
by spherical symmetrization of products of three Wigner
matrices,26,35 Here we derive in aD

m1n1
L1R (u1)Dm2n2

L2R (u2)Dmr0LrR (u
r
).

similar way a set of biaxially symmetrized invariants,
assuming that the phase and its constituent particles have
e†ective symmetry. The application of projection oper-D2hators gives the biaxial invariants as

R
m1m2mr‰ n1n2
L1L2Lr

\PŒ MolD2hPŒ LabD2h[D
m1n1
L1R (u1)Dm2n2

L2R (u2)Dmr0LrR (u
r
)]

\ 14dL1`L2`Lr, even d
m1`m2`mr, even d

n1, even d
n2, even

] [Re[D
m1, n1L1R (u1)Dm2, n2L2R (u2)Dmr, 0LrR (u

r
)]

] Re[D
m1, n1L1R (u1)Dm2, ~n2

L2R (u2)Dmr, 0LrR (u
r
)]

] Re[D
m1, ~n1
L1R (u1)Dm2, n2L2R (u2)Dmr, 0LrR (u

r
)]

] Re[D
m1, ~n1
L1R (u1)Dm2, ~n2

L2R (u2)Dmr, 0LrR (u
r
)]] . (27)

These functions are orthogonal, namely

SR
m1m2mr‰ n1n2

L1L2Lr oR
m1{ m2{ mr{‰ n1{ n2{
L1{ L2{ Lr{ T

\ dj, j{
32p5(1 ] d

m1, 0 d
m2, 0 d

mr, 0)(1] d
n1, 0)(1] d

n2, 0)
(2L 1 ] 1)(2L 2 ] 1)(2L

r
] 1)

(28)

where The pair distribu-j 4 (L 1L 2L 3 , om1pm2pm
r
o ; o n1pn2 o).

tion function can then be expanded as

P(r, u1, u2 , u
r
) \ 4pog0(r)

] ;
L1, L2, Lr

(2L 1 ] 1)(2L 2] 1)(2L
r
] 1)

32p2(1 ] d
m1, 0 d

m2, 0 d
mr, 0)(1] d

n1, 0)(1] d
n2, 0)m

1
,m

2
,m

rn1, n2
] Rm1m2mr‰n1n2L1L2Lr (r)Rm1m2mr‰ n1n2L1L2LrR (u1, u2 , ur), (29)

where the real expansion coefficients are

R
m1m2mr‰ n1n2
L1L2Lr (r) \

1

4pog0(r)

]
P

du1 du2 du
r
P(r, u1, u2 , u

r
)

] R
m1m2mr‰ n1n2

(u1, u2 , u
r
), (30)

whose radial average is

SR
m1m2mr‰ n1n2
L1L2Lr T \

4p

V
P

r2 drg0(r)Rm1m2mr‰n1n2
L1L2Lr (r). (31)

In the limit of intermolecular distances larger than molecular
dimensions the average coefficients converge to ther Aps ,product of two molecular (i.e. and one radial (i.e.SR

mn
L Tui

)
orientational order parametersSR

m0L Tur
)

R
m1m2mr‰ n1n2
L1L2Lr (r) ] SR

m1n1
L1 Tui

SR
m2n2
L2 Tui

SR
mr0Lr Tur

,

(r A ps) (32)
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and thus the average invariants will decay to zero if at least
one of the order parameters averages to zero. Considering the
e†ective phase and molecular biaxiality we can symmetrize the
coefficients and (eqns. (24) and (25)) to getc

ii
c
ij

PŒ MolD2hPŒ LabD2h c
ij
\ ;

pi, qi, pj, qj
a
pi

b
qi

a
pj

b
qj
SR

pipj0‰ qiqj220 T

[
C

;
pi, qi

a
pi

b
qi
SR

piqi
2 T
D2

, (33)

and

PŒ MolD2hPŒ LabD2h c
ii
\ ;

pi, qi, pj, qj
a
pi

b
qi

a
pj

b
qj

;
L/0

4
C(22L ; p

i
p
j
)

] C(22L ; q
i
q
j
)SR

pi
L
`pj , qi`qj

T

[
C

;
pi, qi

a
pi

b
qi
SR

pi qi
2 T

D2
. (34)

After substitution of the explicit values for the small Wigner
matrices26,35 and ClebschÈGordan coefficients36 we get eqns.
(17) and (18) for andc

ij
c
ii
.

We now list the explicit expressions for some rank two
biaxial invariants

R000‰ 00220 \ 14[1[ 3A
zZ
(1)2 [ 3A

zZ
(2)2 ] 9A

zZ
(1)2A

zZ
(2)2] (35)

R200‰ 20220 \ 18[2AxY
(1)2 ] A

xZ
(1)2 [ 2A

yY
(1)2 [ A

yZ
(1)2

[ 6A
xY
(1)2A

zZ
(2)2 [ 3A

xZ
(1)2A

zZ
(2)2

] 6A
yY
(1)2A

zZ
(2)2 ] 3A

yZ
(1)2A

zZ
(2)2] (36)

R220‰ 22220 \ 116[[4A
xX
(1)A

xY
(1)A

xX
(2) A

xY
(2)] 4A

xX
(1) A

xY
(1)A

yX
(2)A

yY
(2)

] 4A
yX
(1) A

yY
(1) A

xX
(2) A

xY
(2)[ 4A

yX
(1)A

yY
(1)A

yX
(2)A

yY
(2)

] 4A
xY
(1)2A

xY
(2)2 [ 4A

xY
(1)2A

yY
(2)2 [ 4A

yY
(1)2A

xY
(2)2

] 4A
yY
(1)2A

yY
(2)2 ] 2A

xY
(1)2A

xZ
(2)2 [ 2A

xY
(1)2A

yZ
(2)2

] 2A
xZ
(1)2A

xY
(2)2 [ 2A

xZ
(1)2A

yY
(2)2 [ 2A

yY
(1)2A

xZ
(2)2

] 2A
yY
(1)2A

yZ
(2)2 [ 2A

yZ
(1)2A

xY
(2)2 ] 2A

yZ
(1)2A

yY
(2)2

] A
xZ
(1)2A

xZ
(2)2 [ A

xZ
(1)2A

yZ
(2)2 [ A

yZ
(1)2A

xZ
(2)2

] A
yZ
(1)2A

yZ
(2)2] (37)

where to keep the notation compact we use A(1) and A(2) for
the cartesian rotation matrices that take molecules 1 and 2
from the laboratory to the molecular frame, and that have as
elements the scalar products

A
mL
(i) \ Sm(i) o L T (38)

with or the axes of molecular frame andSm(i) o \ xü
i
, yü

i
zü
i

M
i
,

or those of laboratory L frame.SL o \ XŒ , YŒ ZŒ
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