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Abstract

We study by means of virtual molecular dynamics computer experiments the
response of a bulk biaxial nematic to an applied external field and in particular the
relative speed of reorientation of the principal director axis and of the secondary
one, typical of these new materials, upon a 7/2 field switeh. We perform the sim-
ulations setting up and integrating the equations of motion for biaxial Gay-Berne
particles using quaternions and a suitable time reversible symplectic integrator.
We find that switching of the secondary axis is up to an order of magnitude faster
than that of the principal axis, and that under fields above a certain strength a
reorganization of local domains, temporarily disrupting the nematic and biaxial

ordering, rather than a collective concerted reorientation oceurs.

KEYWORDS: biaxial nematics, liquid erystals, molecular dynamics, Gay-Berne poten-

tial, quaternions, symplectic integrator, angular momentum, director dynamics.

1 Introduction

The discovery of biaxial nematic (BXN) materials," ® after their existence had been
long theoretically predicted® and confirmed by computer simulations,”® has opened
new potential developments for fast responding and possibly bistable displays. The
essence behind these expectations is the existence of two preferred directions. ie. of
a secondary axis director in addition to the principal axis one characteristic of ordi-
nary nematics, The flourishing of activities involving BXN comprises spectroscopical
characterization by NMR,! X ray.? dichroic? and light scatterng” methods, as well as
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computer simulations, and theory.
Computer simulations are of particular importance in these complex systems also from
the point of view of investigating their potential applications in view of the difficulty,
at least for the time being, of deploying BXN materials with existence temperature,
viscosities and elastic constants all falling in a range convenient for electro-optic ap-
plications (not to mention the design of a suitable switching cell). Theoretical inves-
tigations are also far from simple. For instance, the number of elastic constants for

a BXN are over a dozen'*?

and a similar proliferation of specific material constants
accurs for other properties, e.g. rheological.'™' Apart from widening the gap between
molecular and material properties. this canses obvious computational difficulties in set-
ting up. parameterizing and solving even simple models for studyving the response of a
BXN to an external field.'"s Here we wish to tackle this problem, central to the use of
BXN in electro-optical devices, by using molecular resolution off-lattice simulations,'
In particular, we are interested in estimating the relative response times of bulk BXN
directors to a switching field applied in different directions. This seems particularly
timely in view of recent experimental measurements, on a bent-core BXN?® in a planar
confined geometry, where the expected faster switching driving the secondary director
of BXN with respect to the usual principal anisotropy axis wes actually observed. To

study the response we resort to our previous modelling of BXN in terms of a biaxial
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attractive-repulsive (Gay-Berne type®!) potential'® ™22 We have in fact shown that
by suitably parameterizing the biaxiality of the attractive and repulsive parts of the
potential, a stable thermotropic BXN phase can be obtained. Monte Carlo (MC)?2!
simulations showed this phase to be an orthogonal nematic biaxial phase intervening
between a uniaxial nematic (at higher temperature), and a biaxial smectic (at lower
temperature). Starting from BXN samples obtained with this parameterization, we can

study the behavior of the principal and secondary directors of the bulk fluid when an

external field is applied or switched off. To follow its relaxation time we employ molec-

ular dynamics (MD)* simulations with a purpose written code implementing torque

% In the next section we

and orientational evolution integrator® based on quaternions.
describe our model and virtual experiments in detail, while in later ones we present and

discuss the simulation results.

2 Model

We wish to consider a fluid system of rigid biaxial particles subjected to an external
field, applied along a certain direction, that can be switched to another one of choice
80 as to measure the time required by the nematic sample to adjust to the new field
direction (see Figure 1). The total energy of our model is the sum of two contributions:
a potential term which accounts for the short-range dispersive interactions between all
pairs of particles with distance smaller or equal than a cutoff radius, and a field term

which gives the total interaction between the particles and the external switching field.

2.1 Potential, force and torque in a systems of biaxial GB par-

ticles

In our previous work cn the modelling of biaxial mesogens at molecular resolution

level? 27 we have already developed a biaxial extension of the Gay-Berne (GB) poten-

tial,?! an off-lattice model which has been successfully used for the computer simulation

of mesogenic systems."™ %27 We have also shown'” that stable thermotropic BXN, as
needed for our proposed switching experiment, can be obtained with an appropriate
parameterization of such potential. However, until now, we have essentially studied

10 Since here we need instead to

static equilibrinm properties using MC simulations.
study time evolutions, the use of the molecular dynamics (MD) 2! technique is more
appropriate. In order to implement MD we have to set up and integrate the equations
of rotational motion for a system of rigid biaxial particles in a form that is free from

3 ig particularly suitable for this

spurious singularities and a quaternion representation
purpose. More specifically this means to derive expressions for the computation of the
torque acting on each hiaxial molecule because of its interactions with the other par-
ticles as well as with the external field. Here we start reformulating the biaxial GB
potential in terms of quaternions and proceed deriving explicitly the required deriva-
tives. To keep the treatment as self-contained as possible we report in the Appendix
some of the necessary background material in terms of quaternions and integrators. We
notice that the translational motion is not an issue here since it is described by standard

equations, 2431

2.2 Biaxial Gay-Berne potential

The biaxial extension of the Gay- Berne potential®’***7 (BXGB] describes the anisotropic
interaction between a pair of rigid ellipsoidal particles, and it is parameterized in terms

of their axes lengths o, 0, and o, their potential well depths €., €, and €, and, fur-

ther, by two additional parameters p and v that tune the shape of the potential.'%-2%27
An additional quantity, @, the so-called “minimum contact distance”, determines the
energy wells width. The most general form of this potential can model the heteroge-
neous interaction between dissimilar ellipsoids.”” Anyway, since this paper considers a
single-component system we will omit from the equations the superscripts labelling the
varions species. More explicitly, the potential between a pair of biaxial molecules a and

4 can be written as?% 27



Ulr. Q) = deoe(r, Q) [u(r.Q) — u(r.Q) . (1)

where u(r,Q) = o./(r — o(r,Q) + o.), and ¢, defines the erergy scale. We use the
symbol Q as a shorthand for the two quaternion operators [q®), and [q”) rotating from
laboratory to the specific molecular frames, where [q") = (g).q1. ¢5. ¢3), for i = a, 3,
and r is the intermolecular vector (with length r). The biaxial GB potential reduces
to the standard Gay Berne®! when the molecules become uniaxial, and the parameter
. = 1 og, with gy the unit of distance. The explicit expressions for the anisotropic

contact term (r, Q) are related to the geometrical “contact distance” (see Ref.* for a

discussion)

o(r.Q) =r [20TA ] ()

The symmetric overlap matrix A = A(Q) = A([q”).[q?)) is defined in terms of the

diagonal “shape”™ matrix S, with elements S, = d,40, as

A = MIS°M,, + M}S*M,,, (3)

where M; = M(m; « [) = M([q)) are the cartesian rotation matrices for the two
molecules, and which accomplish an active transformation from laboratory to molecular
frame (see equation A-4 in the Appendix for their actual computation from the compo-
nents of the quaternion operators). The anisotropic interaction term is the product of

two terms

(r, Q) = 4(Q)e(r. Q). (4)
The dimensionless strenzth coefficient ¢4 is

1/2
20,0,

det[A]

f.d{Q) = [a:f’y + Jf] [ {‘3)

(1)

it does explicitly depend on the orientations Q. but not on that of the intermolecular

vector, differently from the dimensionless interaction parameter ez which does

ep(r.Q) =2r 2B 'y, (6)

The matrix B = B(Q) = B([q"), [q”)) is defined in terms of the auxiliary diagonal

“interaction” matrix E, with elements E,; = dq4(€0/€q)"/" as

B = M/EM, + MJEM,, (7)

where the coefficients €, ¢, and ¢, are related to the well depths for the side by side.

width-to-width, and end fo-end interactions.*”

2.3 Torque for the biaxial Gay—Berne potential

The torque acting on molecule measures the gradient of the potential upon an infinites-
imal rotation of the molecule itself.* 3 If the total energy is the sum of pair energies
and external field terms, like in here, the total torque acting on a molecule is the vector
sum of the torques originated by the single terms. General expressions for the torque
(and the gradient) for the family of GB potentials have been reported by Allen and
Germano™ using the methods of Ref.? In addition, the expressions for the so-called
RE variant®*® of the GB potential are given in.*” Here we give some specialized for-
mulae for the computation of the torque [G) of the biaxial Gay Berne potential®*7
obtained from an alternative derivation based on the angular momentum operator de-
fined in terms of quaternions (given in the Appendix). Since completely symmetrical
expressions hold for the torque acting on molecule 3 by effect of molecule o, to simplify
the notation we write the quaternion [q}, the rotation matrix M, and their components
without indicating explicitly with an index the specific molecule they refer to. The
general definition of the torque measured with respect to the inertial laboratory frame

is



(@) = ~i[LU), (8)

where [G) is a polar quaternion (see?® or the Appendix for a definition), and [L) is the
angular momentum operator defined with equation A-7 in terms of the components of the
four-dimensional orientational gradient VU7 = (U /dqq, OU [Ogy, OU [0 DU [ gz ) with
respect to the four components of [q). Since the computation of the torque requires the
evaluation of partial derivatives U /0y, , we can write them for the biaxial GB potential

as

A(r,Q)  Ulr,Q)de(r, Q} Q} 13 30 (r, Q) ]
e = Q) e pzu (r,Q) — 6 (x, Q) (9)
The partial derivatives of the anisotropic contact distance are
20(6,Q) _ 0*(.Q) 5, 10A, 10)
gy r? gy

where we used (JAA~'/dq,) = 0. The derivative of matrix A with respect to the
components of the quaternions [q) for molecule a is computed in terms of the derivatives
of the 3 x 3 cartesian rotation matrix for the same molecule

JdA  oMT »OM

J— 2 T
dg, gy SM M S g, (11)

The symmetric derivative of A is recovered as a not-symmetric term summed to its

transposed. More explicitly

oxnu M.,

ub .
—_— Moy + M ,— . 12
LMH R ! P4, (12)

Employing the definition of M in terms of quaternions (see equation A-4) the computa-

tion of the matrices IM/dg, with the partial derivatives with respect to a component
(n is straightforward. The derivative of the anisotropic interaction term is a bit more

cumbersome since it involves two different terms

%e(r, Q) _

dney(Q)  dluey( Q)
o m[ A, et (13)
The derivative of first term involves the derivative of a determinant
ey (Q) A, DA, ()A i
- = 'l + A A A
aq" ‘J (l(" [A] z Cabe o I e iy a(fn ze + Azas (_)q"
(14)

where €., is the Levi-Civita symbol (permutation symbol) while a, b, ¢ can be @, y or
z, and the expression for the derivatives of A are given by equation 11. The derivative

of the second interaction term is instead similar to that of the contact distance

dlnely(r, Q) 2p TB! (dM dM) B 'r (15)

94, rfep(r.Q) dg, OV M Eé)qn
Assembling these explicit expressions to obtain an equation for the torque allows to
integrate the fundamental law of rotational dynamies [G) = [L) = d[L)/dt relating the
torque [G) to the time derivative of the total angular momentum measured with respect
to the inertial laboratory frame. Using a finite differences approach is then possible to
obtain the orientational coordinate [q) and the angular momentum [L) of each particle
at time { + Af given these at time £. The specific technical aspects of this procedure of

numerical integration are given in the section (¢} of the Appendix.

2.4 Gradient of the biaxial Gay—Berne potential

To solve the equations of translational motion it is necessary to calculate the gradient
of the biaxial Gay Berne potential with respect to the intermolecular vector r, which

corresponds to the opposite of the force acting on the center of mass of a particle

Ulr, Q)V,E(r Q) 46 Gel(r, Q) [

VeUlr.Q) = T o

2096, Q) - ', Q) [} - Veo(r. Q)]
(16)



where the gradients of the anisotropic contact and interaction terms are

Vei(r.Q) = M ﬁB—l - 1] r, (17)
and
V.o(r,Q) = @ [1-20%(r,QA|r. (18)

2.5 External field

A central point of this paper is to consider the effects of an external weak field ap-

plied to the BXN system. The simplest (and standard) model used to describe the

response of nematie liquid crystals,® arises from the mesoscopic dielectric or magnetic
anisotropy, which in tum is due to the summing up of microscopic anisotropies. The
effective symmetry of the coupling between field and director in a nematic liquid crystal
is quadrupolar (i.e. second rank), the energy is invariant under reversal of the director,
and the interaction energy scales with the square of the field strength.™ In nematic ma-
terials the first rank contribution to the energy averages to zero. This model is nsually

t“'!!}

sufficient for analvzing electro-optical experimental data, for instance from Kerr effec

or birefringence measurements. Specifically, the interaction of a uniform external field
F (here either the laboratory axes X, Y, or Z) with a single molecule, resulting from its
coupling with a certain axis 1 (here either the particle axes 1 = x, y. or z) is modelled

with a second rank Legendre polynomial® 1216

Ur =~ [50- B - 5] (19)

where F can be an electric, or a magnetic field, and £p is the coupling parameter
measured in ey units.  As a result of the previous assumptions, this field-coupling
model does not consider the additional energy contribution arising from the interac-

tion between induced dipoles, or other local field contributions. To give an estimate
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of a conversion factor from simulation to real units we can write the field strength as

E= 35:15!")(5(

o). where £¢ is the vacuum permittivity, Ac the dielectrie anisotropy
of the liquid crystal, relative to the axis involved, and Vv, = ﬁagaxoua; /6 the molecular
volume. Taking as a reference the biaxial mesogens in? and tle parameterization used

here and in'®

(0, = 14 gy, g, = 0.714 gy, and . = 3 7g), we can estimate the energy
unit from the experimental and simulated nematic-isotropic transition temperatures, i.e.
co = kT /Ty = kg 550 K /3.2, and the length unit from the molecular dimensions as
7y 7= 15 A. Since experimental data for biaxial nematics are currently not available, we
arbitrarily assume a dielectric anisotropy of 10 for both the axial and transversal switch
experiments. To avoid introducing unnecessary complications and specific scaling fac-
tors at this stage, we have used the same parameters for all virtual experiments. The
switching measurements of Lee ef al*® have been made for a confined sample using spe-
cific planar cells and anchoring conditions, but this paper does not address surface effects
and considers only the intrinsic properties of a bulk system. With these assumptions and
material parameters the electric field results to be E 2 120y/T V pm ™', and a coupling
parameter £ = 0.1 corresponds to 2 38 V pm~", a value larger, but of the same order
of magnitude of the fields used by Lee et al®" For every experiment of Figure 1 we have
considered the torque generated by the coupling between the space-fixed orientation of
the field F and a molecular axis to give an additional contribution to the total torque

(here as a cartesian vector) acting on each molecule as Gp = 38 (1- F) (1 x F).

3 Computer Experiments

We have performed a series of virtual MD 7 /2 director switching experiments on samples

formed by N = 8192 elongated biaxial GB particles parameterized as in Ref.! to have
shape and interaction biaxialities of opposite signs, namely A, = 0.216, and A, = —0.060.
The cutoff radius for the GB interaction was r. = 4 oy, and using a dimensionless unit

mass m* = m/my = 1, the time step was chosen as At* = (eg/ofimg)" /At = 0.001.

10



Referring again to moleenles similar to those in,? with relative molecular mass M,
800 amu, this time step is = 0.04 ps. The standard velocity Verlet integrator® 2! has
been used for the translational equations of motions, while the description of the actual
algorithm emploved for the equations of rotational motion expressed in quaternions is
given in the Appendix. The sample was maintained at constant temperature and pres-
sure by means of the weak coupling thermostat and barostat due to Berendsen,™ with
dimensionless time constants 7p = 1, and 7p = 100. The thermodynamic properties,
and order parameters of such equilibrinin MD samples ave entirely consistent with those
obtained from earlier M simulations.'” Each virtual MD experiment was started from
the same well equilibrated configuration in the BXN region of the phase diagram (with
P* = 8and T* = 2.8). The director frame of the starting configuration has been initially
aligned with the laboratory axes (given here by the MD sample box sides) using a weak
space-fixed field with & = 0.05, which determines an average energy (Up) contributing
to less than 0.4% of the total potential energy. The average uniaxial and biaxial order
parameters computed from the diagonalization of ordering matrices™'” and relevant to

the experiment can be defined as ensemble averages of scalar products involving the

particle molecular axes and the director frame axes n, m, and o = m x n

(R = (5@-m?=3). (20)

() = (5 [0x- 07 = (x-m)? = (y o) + (y - m)?] ). (21)
For our specific svstem and the thermodynamic state point under study these have
average values (R%)) = 0.787 £ 0.006, and (R3,) = 0.247 + 0.008. We have verified
that the weak aligning field determines only a small inerease in phase biaxiality (R3,)
with respect to the unperturbed equilibrinm system, and no measurable effect on the
principal order parameter {(R2,). Every virtual experiment was started by switching on
at a certain time ¢ = 0, the external space fixed uniform field directed along one of the

time-zero director frame axes n, m, or o = m x n (pre-aligned with the laboratory
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frame axes Z, Y, and X). Upon turning on the external field each molecule experiences
a torque which produces a collective bias in the rotational motion of the particles, and
the subsequent overall reorientation of the director reference frame. In Figure 1 we show
a scheme with the geometries of the various types of virtual experiments performed in

this study.

4 Simulation Results

In analyzing the response of our BXN to the application of the external field (see Figure 1
for actual set up) we concentrate on two aspects: (i) the overall response of the director
and its rate of switch, and (ii) the molecular reorganization connected to the switching.

Here these two aspects are discussed in turn.

4.1 Director switch

To describe the dynamics of the 7/2 switching experiments we have monitored the time

dependent evolution of the relevant components of the director frame axes, as well as of
the order parameters, identified and computed with the algorithm given in.* and stored
every 20 time steps, For instance, in the experiment of type (C'). where the external
field is directed along m and couples to the molecular x axis, the entire director frame
is rotated of 7/2 around n. For this geometry, the relevant observables are the x, and
y components of the m reference axis transforming. with respect to the space fixed
laboratory frame, from an initial value close to 0 to a final one close to 1, and from 1
to 0 respectively. Similar choices of relevant components have been made for the other
switching geometries of Figure 1. In Figure 2 we show some tvpical results for three
different switching experiments using a field coupling parameter £ = 0.10 €5. The pair
of solid curves deseribes the outcome of experiments (C'): upon turning on the external
field we can see how the initially large m,, component starts decreasing (thick solid line)

while m, increases (thin solid line). At the end of the experiment m, goes towards

12



zero, while i, approaches asymptotically unity.  Similar trends can be seen for the
other two experiments of type (A) and (B) of Figure 2, where the principal principal
director n is rotated {dashed, and dotted curves). In these cases, there are two possible
switching geometries in the bulk phase, where either the molecular x, or y axes are
coupled to the field (see schemes (A) and (B) of Figure 1). The two experiments involve
different transversal directions and are quantitatively different because of the molecular
and phase biaxiality. The switching times involving the coupling of the field with the
molecular axis perpendicular to the largest face are constantly the highest. as is the
case in type (B) experiments where a larger volume of fluid needs to be displaced by
pushing away nearby molecules to complete each particle rotation. It is clear from the
paradigmatic results of Figure 2 that the secondary director realignment is quite faster
than the other.

These curves were very well fitted with a logistic, sigmoidal type, function

() = exp[b(t — a)] /(1 + exp[b(t — a)]), (22)

with the optimal parameters a, and b obtained by chi-square minimization using the
classical simplex algorithm of Nelder and Mead.* We have then arbitrarily defined the
switching times £, as those required to the fitted director component to become larger
than 0,95 (if increasing) or smaller than 0.05 (if decreasing). In Figure 3 we show the
results for these switching times as obtained for the varions experiments. Although the
absolute switching times are not available from our generic type simulation based on the
generalized Gay-Berne model, their relative values should be reliably assessed. Notably.
the reorientation of the secondary m director is faster than that of the principal one n
by approximatively one order of magnitude. For the family of switching experiments

addressed by this study we have not found, as expected on the grounds of symmetry of

the expe

1ents, a systematic anisotropy for the coupling of a transversal field with the
molecular x, or y axes, and the reorientation time of m is practically the same in both

(C') and (D) cases.
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4.2 Molecular reorganization under field switching

From a naive point of view, possibly comforted by the smooth change in director com-
ponent evolution (see Figure 2) the effect of a switching field could be expected to be
just that of rotating the sample as a whole. However, this is not always the case, as

AL A2 45

shown by experiments 46,47.49

and simulations. Thus, although the expectation
for a nematic is that of uniform rotation as a monodomain, for smectics this process
oceurs for director-field angles below 45°, while a complex reorganization occurs when
the angle is 90°. To examine changes of orientational organization in our BXN samples,
we have monitored the time evolution of the uniaxial and biaxial order parameters (see
equations 20 and 21). Since R2,(t), and R2,(t) refer to the instantancous director frame,
they should be constant if the sample reorients as a whole, In Figure 4 we report as
an example these time evolutions for the transversal (biaxial) switching experiment of
Figure 1-('). We see that in the transversal switching experiments the final value of
the R2,(t) order paramerer, is slightly increased (= 8% for £¢ = 1), while for the weaker
couplings (£ < 0.2) it is practically unaffected. The field application induces a tempo-
rary disappearing of the biaxial ordering (i.e. a dip in the R3,(f) plots of Figure 4-b)
which is reversibly recovered after the relaxation of the molecular organization. albeit to
a higher value (see Figure 4-a). This indicates that for these experiments, transversal
switching appears to proceed with just a single regime for all field strengths, but also
that this process does not take place with an overall rotation. but rather via localized
biaxial domain reorientations, causing first the overall phase bhiaxiality to be momen-
tarily destroved. with its recovery only at the end of the switching process, when the
long range correlation between domains are restored. At the same time, the orienta-
tion of the n director axis is stable during the experiment and only mildly affected by
the switching field (see Figure 4-b). A direct visualization of this process is shown in
Figure 5 where we present four MD sample snapshots taken ab different times for this
type (C') experiment with field strength £ = 0.10. The particle orientations are color

coded to make it easier to appreciate the change in direction of the molecular y axis

14



with respect to the laboratory X axis, which is the divection of the applied field. We see
that the intermediate Figure 5-b configuration (corresponding to the dip in R3,(t) in
Figure 4-b) shows a non uniform distribution of transversal orientations and several bi-
axial domains. The uniform phase biaxiality is almost recovered in snapshot Figure 5-d
which has been taken at the end of the order parameter dip of Figure 4-b.

Considering now a main director switching, in the plots of Figure 6 we see the order
parameters dyvnamics for the tvpe (B8) experiment of Figure 1. For this geometry the
instantaneous principal order parameter 122,(t) and the phase biaxiality R3,(f) are es-

at for the smaller field strengths (up to & = 0.2), while they exhibit an

sentially cons
initial decrease followed by a rapid recovery to the initial values for the higher coupling
values £ = 0.5, and 1.0. For these experiments we see that the dynamic regimes are
different from the previous (transversal) one and we observe two different types of be-
havior. For the weaker fields the orientational structure of the biaxial phase is conserved
throughout the experimants, and the switching appears to take place through a collec-
tive concerted reorientation of the whole sample (i.e. n), while m remains unaffected.
For the stronger fields instead the larger temporarily coupling destroys the long range
correlations, and the degree of orientational ordering during the experiment decreases
both with respect to n and m and we observe in Figure 6 the falling values of B3,(t) and
R2,(t). The uniform structure of the BXN liquid sample breaks down into uncorrelated
but still locally aligned domains. Even in this case the long range orientational corre-
lations are recovered towards the end of the experiments. The snapshots of Figures 7
and & provide a coneretz example of these two regimes. In Figure 7 we see that at all
times all particles are homogeneously aligned with respect to a common principal direc-
tor n which continuously rotates so as to eventually align with the external field at the
end of the experiment. On the contrary, in Figure 8 the intermediate snapshots show
the formation of uniformly oriented domains which align with respect to the field with
different rates, and a uniform distribution of orientations is recovered only for snapshot

Figure 8 d.

5 Conclusions

We have shown that a biaxial nematic can respond effectively to an applied external
field allowing a change of the direction of the principal and secondary directors and that
the latter 7/2 switching is up to an order of magnitude faster than the former one. This
is an essential feature of future BXN based electro optical devices and displays and.
even though our molecular dynamics experiments were performed on model systems
and in bulk, thus neglecting surface and anchoring effects, we believe the result to be
encouraging from the peint of view of future applications.

We have also shown that the process of realignment of the BXN following the switch
can involve a reorganization of the molecular orientational structure in the liquid phase,
rather than a simple uniform reorientation. This process should be amenable to experi-
mental tests, e.g. using NMR' or optical technigues. It seems clear that MD simulation
of biaxial devices can be a useful complement to theory and experiment, both in ex-

plaining and predicting the behavior of these complex anisotropic systems.
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Appendix

In this Appendix we give some relevant expressions for the: (a) angular momentum oper-
ator I:., and torque G in terms of a quaternionic representation of molecular orientations;
(b) kinematic and dynamic equations of rotational motion in terms of a quaternionic
representation; (c) velocityVerlet-like integrator of the rotational equations of motions
for a rigid body used in this study. To begin with we summarize the properties of

quaternions.

Quaternions

A molecular dyvnamics simulation of rigid bodies using quaternions is appealing since
the equations of rotational motion are free of singularities.”!
Even if extensive and detailed discussions of quaternion algebra, and the relation with

26 we think it is convenient

the three dimensional rotation groups can be found e.g. in,
to introduce the notation used. and give a short recapitulation of gquaternion properties
and algebra.  All rotations are considered active, and the convention used for angles,
rotations, and quaternions is that of Altmann,”® which coincides with that of Rose,’* and
Brink and Satchler® for Euler angles, and consequently that of Zannoni and Guerra®
for quaternions.

A quaternion [q) = (qo, ¢1. G2, 43)*" is a unitary operator R(c‘sn] which rotates a tensorial
quantity of rank 1/2 of an angle ¢ with respect to a three-dimensional unit vector
n = (n,,ny. n.), and it can be written in a matrix representation as a 4 1 column with

components go = cos(o/2), g1 = n,sin(¢/2), g2 = ny sin(/2). and g3 = n. sin(¢/2).

The product of two quaternions [¢) = [a}[b) = [a][b}, i.e. the composition of two
successive rotations, is a quaternion itself, and using a matrix product can be written

as

+ag —ay —as —ag| |y
©) = +ay +ag —az +az| b ~ [alb). (A1)

+ag +az +ag —aq| |by

+az —as +ay +ag| |bs
Quaternions representing (unitary) rotation operators are normalized to one as (a][a) =
[a)T[a) = ¥,4? = 1. The inverse of a quaternion [q)~' = [—q) has the property
[a]7a) = [a]"[a) = [~q][q) = [1), where [~q) = (go. —q1. —g2, —¢3) performs a rotation
of an angle —¢ around the axis n, and [1) is the identity operator, i.e. a column matrix
with (1,0, 0.0) elements. Any three-dimensional vector r = (r,.ry. 7.) can be considered
as an axial quaternion [r), whose first component gy = 0, and ¢, = r,. g2 = r,, and
g3 = 1., such that r = pole-of{[r)}. The unitary operator pole-of extracts the vector

part from an axial quaternion.?®

Since in general (r][r) # 1, the guaternion [r) is not a
rotation operator.

The operator which rotates a vector (i.e. a rank 1 tensor) from laboratory (i.e. space-
fixed, aka inertial) frame to molecular (i.e. body fixed, aka local, e.g. the one defined

by the eigenvectors of the inertia tensor) frame r,, = R(m < !)r is obtained from the

conical transformation Inking the two systems as®

T .
[riﬂ) = [q] [l‘][q} = [MI[I‘} (A-Z)
The 4 x 4 rotation matrix [M] has a block structure

110
[M] = : (A-3)

0| M
where the 3 x 3 minor relative to the element [M];; is the correspondent cartesian
rotation matrix M(m — {)*%% which performs the active rotation of a rank one tensor

from laboratory to molecular frame (e.g. r,, = Mr)
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1-205 =203 210 + 26003 20103 — 2402
M= 20102 — 20005 1—2¢5 — 247 20205 + 2000 | - (A-4)
2195 + 2q0g2 202q5 — 2q0q1 1 — 293 — 2¢}

(a) Angular momentum operator

The angular momentum operator L can be derived from the expression of an infinitesimal

rotation d¢h around an axis n,26-30.52

R(§én) = exp (—;.59(:1 ‘L)) (A-5)

The angular momentum operator in a quaternion representation is

[L‘“’) = —éi[vq —q4)- with g, = (q][V,) = Zq,,(i),r‘c’)q,i]. (A-G)
where ¥V, = (8/0qy, /09, 0 /dqs, 3/ 0qs) is the four dimensional orientational gradient.
The Lagrange multiplier g, enforces the quaternion normalization constraint and pro-
duces a conditional derivative tangent to the unit four-dimensional sphere. Expressions
for the angular momentum operator L in terms of quaternions have also been reported,
e.z. by Allen™ (using the convention of Goldstein®). The same operator written with

respect to the laboratory frame is

[L) = [L)[~q). (A-T)

The cartesian angular momentum operator is
L= (f_,. Ly, i;) = pole of {[L)} (A-8)

(b) Kinematic and dynamic equations of rotational motion

The kinematic equation of motion linking the angular velocity (measured with respect

to the laboratory frame) with the time derivatives of the components of the rotation
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operator ig’515%

[a) = (1/2)[w][q). (A-9)
Both angular velocity
w) = [M]"[I,] "' [M][L), (A-10)
and angular momentum
[L) = 2MJ"[L,la)"[4). (A-11)

are polar gquaternions defined in terms of the cartesian angular velocity w and angular
momentum L, which in turn can be computed during the MD trajectory at every discrete
time from the orientation [q) and the velocity [q). The inertia tensor (I, ] measured with
respect to the molecular frame, has the top left diagonal element (L], = 1, while its

3% 3 minor is a diagonal matrix I,, whose elements are the eigenvalues I, [, and ..

L] = 4—] (A-12)

The dynamical equations giving the time evolution of the orientation [q), and the angular

of the inertia tensor

momentum [L) can be determined considering the single molecule Liouville operators

Uq and Uy, defined as?-

iUq = (d][V, — g49). (A-13)

and

UL, = (G][Vy), (A-14)
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where the four-dimensional gradient [Vy) = (3/dLq, &/IL,,8/0L,, 3/0L3). The effect
of the unitary operator exp (-c';\t Uq) = exp (AH{q][V, — g,q)) is that of evolving of a
time step the orientation from the value at ¢ to that at ¢ + At by means a finite rotation

of the gquaternion. Within a first-order approximation we have

exp {:-mr. Uq) [a) = cos(GAL)[q) + Al jo(gAl)[d). (A-15)

where jo(x) = sin(#)/x is the rank zero spherical Bessel funetion of the first kind, with
the purpose of avoiding numerical problems for ¢ — 0. This results is essentially the core
of the algorithm proposed by Matubayasi and Nakahara in® (see also® ™ for detailed
discussions on the properties and stability of the integrators based on this evolution op-
erator). The effect of the unitary operator exp (-:'At TjL) = exp (Af (L][V ;}) is instead

that of evolving the angular momentum from t to t + At

exp (iAtUp) [L) = [L) + At[G). (A-16)

This is also the approximated solution of [L) = [G) given by the Euler method of
solution of differential equations. The total single molecule Liouville operator is U =
qu + Uy, and it defines the finite difference propagator exp (hﬁa‘. (qu + fJL)) which can
be approximated using a Trotter factorization to produce a time reversible symplectic

integrators.*

(c) Propagator/integrator of rotational equations of motion

The starting point of the evolution algorithm are the dynamical variables specifying for
every molecule the orientation [q(0)), and the angular momentum [L(0)) at a certain
time { = 0. From these dynamical variables it is possible to compute the angular velocity
[a(0)} throngh the kinematic equations A-9 and A-10 given earlier.

The time evolution by a discrete time-step At is accomplished with the following scheme

(which produces a velocityVerlet-like algorithm®°%):

21

(1) Half time-step evolution of the angular momentim

[L{At/2)) = [L(0)) + (At/2)[G(0)). (A-17)

where the torque [G(0)) is a function of the orientation [q(0)). Once [L{A#/2)} is known,

the half-integer time-step orientation is estimated from [¢(0)) as

[a(At/2)) = cos((0)A¢/2)[a(0)) + (At/2) juld(0)At/2)[a(0)). (A-18)

and the half-integer time step angular velocity (necessary to perform the following step)

is computed as

[a(A1/2)) = (1/2)a(At/2))L] [a(At/2)] [L(AL/2)][a(At/2). (A-19)

(2) Whole time-step evolution of the orientation

[a(Af)) = cos(¢(AL/2)AN)[q(0)) + At jolG(At/2)At)[a(At/2)], (A-20)

and from this orientation the torque [G(At)) is caleulated.

(3) Half time step evolution of the angular momentumn

[L(AY) = [L(AL/2)) + (At/2)[G(AL)), (A-21)

and from [q(Af)) and [L(At)) it is possible to compute [¢(Af)] inverting equation A-11
as [q) = [q][L,]'[M][L)/2 and complete the time evolution cycle.

In the limit of At — 0 equation A-20 is consistent with the [q][q) = 0 constraint. To im-
prove numerical aceuracy when using longer times steps it may be convenient to actually
enforee this constraint in the MD code, even though this destroys the time reversibility
property of the integrator.”*® This orientation propagator has been embedded in a
simple multiple time step scheme™ with a standard velocity—Verlet propagator for the

translational motion to achieve an algorithm for the complete finite differences integra-

tion of the full equations of motion for a rigid body.™
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Figure 1: (Color online] The geometry of the principal (A), (B), and secondary (C'),
(D) switching experiments described in the text: the director axes are labelled n, m,
and o = m x n (not shown here), while the external field F couples in turn with the

molecular x, y, or z axes and generates the torque G.

Figure 2: (Color online) Dynamics of the field induced reorientation of the principal
(n) and secondary (m) director axes of the BXN phase for the experiments of type (A)
(dashed), (B) (dotted), and (C') (solid) of Figure 1., for an external field of magnitude
Ep = 0.10 ¢y, Each experiment is described by a pair of intersecting curves (one thin,
the other thick) with the same drawing styvle. These lines represent the evolution of
selected components of a director axis (with respect to the space fixed frame) whose
values are exchanged by the experiment. Thin (thick) lines are the components parallel

(perpendicular) to the field at the beginning of the experiment.

Figure 3: (Color online) The log,, plot of the principal (A), (B), and secondary (), (D)
switching times tg for various commutation experiments of Figure 1, with field module

Ep = 0.10, 0.20, 0.50, and 1.00 €.

Fignre 4: (Color online} Dynamics of the instantaneous: (a) uniaxial [2,(t); and (b)
biaxial RZ,(t) order parameters for the transversal switch, type (') experiments with

field m, coupled to molecular axis x.

Figure 5: Snapshots of BXN samples relative to a short axis switch virtual experiment
of type (C) with field £ = 0.10, showing biaxiality disappearance. The snapshots are as
viewed from the Y laboratory axis and have been taken at time steps: (a) t/At = 0; (b)
40000; () 60000: and (d) 100000. The particle orientations are color coded according

to the palette shown (e), with cos 7 =y - X.

Figure 6: (Color online) Dynamics of the instantaneous: (a) uniaxial R2,(f); and (b)
biaxial R3,(t) order parameters for longitudinal switch, the type (B) experiments with

field m. coupled to molecular axis z.

Figure 7: Snapshots of BXN samples relative to a long axis switch virtual experiment
of type (B) with relatively weak field (£ = 0.10), showing whole sample rotation. The
snapshots are as viewed from the X laboratory axis and have been taken at time steps:
(a) t/At = 0; (b) 160000; (c) 240000; and (d) 320000, The particles orientations are

color coded according to the palette shown (e), with cos 3 =2-Y.

Figure 8: Snapshots of BXN samples relative to a long axis switch virtual experiment
of type (B) with strong field (£ = 0.50). showing order disruption. The snapshots are
as viewed from the X laboratory axis and have been taken at time steps: (a) {/At = 0;
(b) 40000; (¢) 60000; and 80000(d). The particle orientations are color coded according

to the palette shown (e), with cos 7 =z-Y.
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