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Classical molecular dynamics simulations have been used to explore the phase diagrams for a family
of attractive–repulsive soft–core Gay–Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and
M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e.,
of a moderately repulsive short–range interaction, on the order parameters and phase behaviour of
model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial,
and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the ne-
matic region of the phase diagram show that endowing mesogenic particles with such soft repulsive
interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also
shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g.,
with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to in-
crease the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate
second virial coefficients and show that they are a useful means of characterising the change in ef-
fective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the
interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational
flexibility) could provide a pathway for the actual chemical synthesis of stable room–temperature
biaxial nematics. © 2011 American Institute of Physics. [doi:10.1063/1.3646310]

I. INTRODUCTION

Several families of complex liquid crystal systems,
formed by large biomolecules, polymers or colloidal
nanoparticles, exhibit a high degree of conformational
flexibility. This allows for a significant amount of inter-
penetration of the molecular surfaces of the mesogenic
species on close approach. In such cases, particle interactions
cannot be properly represented by the standard repulsive
interactions commonly used for rigid bodies. A short (and
incomplete) list of these systems includes a class of biaxial
nematic mesogens,1, 2 ultrasoft anisotropic colloidal systems
(such as star polymers3), hydrogel nanoparticles,4 soft
microgels,5 deformable colloidal particles,6 dendrimers,7

self–assembling protein clusters,8 anisotropic nanoparticles
with shape–memory,9 and semiflexible viruses.10

The complexity of these systems currently defies detailed
atomistic study but, from the point of view of their pair in-
teractions, particles can be modelled at the simplest level by
replacing the complete impenetrability of hard interactions11

by weak short–range (“soft ”) repulsions. Here, a “soft ” in-
teraction potential mimics a soft molecular surface, allowing
partial overlap of individual mesogenic species when closely
packed.

The possibility of partial particle interpenetration is also
particularly interesting from the simulation point of view,
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since it can help proper equilibration and formation of com-
plex structures, avoiding “kinetic locking” of partially or-
ganised molecular structures. With this in mind, soft sphe-
rocylinders have recently been exploited, with a combina-
tion of soft and harder building blocks, for the simulation
of dendrimers and polyphilic systems.12–15 Strings of soft re-
pulsive ellipsoids have also been used for modelling liquid
crystals and their rheological properties.16, 17 Quite indepen-
dently Allen and collaborators18 have used another soft re-
pulsive ellipsoid variant to study colloidal particles in liquid
crystals, and nematic–isotropic interfaces.19 Soft Gaussian–
core repulsive ellipsoids potentials, forming various crystal
structures as well as smectics and nematics, have also been
proposed by Prestipino and Saija,20, 21 and Nikoubashman and
Likos.22

For a variety of systems, attractive interactions cannot be
neglected and the Gay–Berne (GB) potential in its uniaxial23

or biaxial form24, 25 currently represents the de–facto standard
attractive–repulsive molecular resolution model for the
computer simulation of liquid crystals and self–assembling
anisotropic materials11, 26, 27 (see Ref. 28 for a review of the
current Gaussian overlap and generalised GB potentials).
We have recently proposed a soft–core (SC) version29 of the
general biaxial GB potential, where both the attractive and
repulsive parts are maintained, while the steepness of the
repulsive part of the potential can be varied. A preliminary
investigation has shown that the potential can still form
nematics and smectics, and when coupled with Hamiltonian
replica exchange, can provide a considerable speed up in
computer simulations. This soft–core GB potential has
recently proved to be invaluable in the simulation of main
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chain liquid crystal swollen elastomers,30 where equilibration
of conventional models is very difficult.

When introducing a new feature (such as softness) in
a known potential, a key problem is understanding how the
changes to the potential affect the phases that can be ob-
tained. In the current paper we present a molecular dynam-
ics computer simulation study, which explores the isotropic,
nematic, and marginally the smectic regions of the phase di-
agrams for uniaxial and biaxial ellipsoids with various de-
grees of softness, and also examines the effect of SC repul-
sions on mesogenic properties. In particular, since off–lattice
hard–core models provide a good description of the entropic
contribution to liquid crystalline behaviour, we have studied
how the weakening of this repulsive contribution combines
with anisotropic attractions towards the stabilisation of ther-
motropic mesogenic fluid phases, especially the uniaxial and
the biaxial nematics.

A key quantity in estimating the relative importance of
the attractive and repulsive contributions to the pair potential
is the second virial coefficient B2.31, 32 For protein and
colloidal suspensions, this is particularly valuable because B2

has been used to identify the range of conditions (leading to
the right balance of attractions and repulsions) favourable for
protein crystallisation as discussed by George and Wilson.31

As B2 is experimentally measurable,33 and since the softness
can in principle be tuned by appropriate coating of a colloidal
nanoparticle with polymer chains (or other surface treat-
ments), it is important to relate phase behaviour to B2. This
was achieved by Vliegenthart and Lekkerkerker32 for simple
spherical Lennard–Jones particles either of the standard 6–12
type or with the modified shorter range 18–36 form, with the
results related to the earlier George and Wilson suggestions
for proteins. Here we calculated numerically B2 for the
various potentials considered.

The plan of this paper is as follows: in Sec. II we
provide the technical details of the computer simulations; in
Secs. III A and III B we discuss the molecular dynamics and
second virial results for uniaxial and biaxial SC ellipsoidal
models, respectively, and compare them with those from
the standard GB potential.34, 35 Conclusions are presented in
Sec. IV.

II. SOFT–CORE MODEL AND
COMPUTER SIMULATIONS

The potential used in this work is a soft–core (GBSC)
version29 of the standard GB model,23–25 which describes the
anisotropic and heterogeneous interaction between uniaxial
and biaxial ellipsoidal particles. The SC variant of this
potential has been obtained by replacing the steep repulsive
branch of the UGB energy with a constant–slope USC surface
(see Figure 1), and smoothly seaming the two functional
forms with a sigmoidal switching function

UGBSC = [1 − f (r,ω)] UGB(r,ω) + f (r,ω) USC(r,ω),

(1)

where r is the centre–centre distance, and ω ≡ (ω1,ω2,ωr)
stands, respectively, for the set of orientations (e.g., Euler an-
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FIG. 1. Representative profiles for the uniaxial GBSC potential with
σx = σy = σc = 1 σ0, σz = 3 σ0, and εx = εy = 1 ε0, εz = 0.2 ε0, μ = 1,
ν = 3, and slopes m/(ε0 σ−1

0 ) = −100, −80, −60, −40, −30, and −20.
(See text for additional details.) The steepness for the logistic seaming
function was k = −70 σ−1

0 , and a threshold cut–off value ‖1 − f ‖ = 10−6

was used (see Ref. 29). The energy curves are relative to the side–by–side
interaction of two parallel ellipsoids. A plot for the standard GB side–by–side
interaction energy is also provided for comparison.

gles, quaternions, cartesian matrices, . . .) of particles 1 and 2,
and of the intermolecular vector r. Particle–particle sepa-
rations and energies are measured in σ0 and ε0 units. The
GB interaction between two ellipsoidal particles is written
as23–25

UGB(r,ω) = 4ε0 ε(ω)[u12(r,ω) − u6(r,ω)], (2)

with u(r,ω) = σc/(r − σ (ω) + σc). The shape σ (ω) and the
interaction ε(ω) terms control the anisotropic contact distance
and potential wells. The SC repulsive energy has a linear de-
pendence on the particle–particle separation29

USC(r,ω) = m [r − σ (ω)], (3)

where σ (ω) is the anisotropic contact term of the GB poten-
tial. The sigmoidal seaming function is

f (r,ω) = exp[k (r − σ (ω))]/(1 + exp[k (r − σ (ω))]),
(4)

where the parameter k defines the steepness of the logistic
function at its inflection point. The GB and SC surfaces are
smoothly seamed along the locus r = σ (ω), UGB(r,ω) = 0
where the GB energy changes sign. This choice has two ad-
vantages: one physical, the other computational. The first
one is that mesogenic properties (arising from the specific
attractive–repulsive GB energy surface) are not greatly im-
paired if the softness is not very large compared to the
original r−12 repulsive branch of the standard GB poten-
tial. The second one is that the SC energy term can be ef-
ficiently determined using quantities already computed for
the evaluation of UGB(r,ω). Using this approach the GBSC
potential can model either relatively soft particles that still
do not interpenetrate (i.e., for temperatures giving liquid
phases, this is effectively equivalent to having a vertical
asymptote for r − σ (ω) + σc = 0), or very soft particles that
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can strongly overlap. Further details on the computation of
energies, forces, and torques for the GBSC potential can be
found elsewhere.29, 36, 37 Here, we concentrate on the physical
properties of this coarse–grained model and deploy classical
molecular dynamics (MD) simulations to assess the general
effects of softness on the mesogenic properties of uniaxial and
biaxial GBSC ellipsoids. The emphasis of this computer sim-
ulation work is on trends, so we study a large number of state
points using relatively small samples and aim to locate phase
transitions from changes of order parameters, radial correla-
tion function, and visual inspection of the samples rather than
from explicit free energy calculations. The latter one is indeed
still quite demanding, even if we note some recent progress in
this area.38–40

Classical MD simulations of N = 1024 particles have
been performed with constant number of particles N ,
volume V , and temperature T , using a cubic box with
periodic boundaries at dimensionless number density ρ∗

≡ (N/V ) σ 3
0 = 0.3.34 The velocity Verlet41 and the

quaternion–based29, 42, 43 integrators for the classical transla-
tional and rotational equations of motion have been used with
a dimensionless time step �t∗ = (ε0σ

−2
0 m−1

0 )1/2�t = 0.001.
Temperature has been controlled using a weak–coupling
Berendsen thermostat,44, 45 with time constant τ ∗

T = 10. State
points have been equilibrated for at least 200 k time steps and
mean properties have been computed as block averages (with
the corresponding rms errors) performed over 200 k time step
runs with an initial sampling stride of 20 time steps (see
the tables in the supplementary material46 for a complete
listing of these values). The MD simulations have been run
on 3 GHz Intel Xeon 5160 cores, with a one 200 k time step
run requiring ≈21 h, for a total of approximately 19 000 h for
the 454 state points studied.

We have considered elongated Gay–Berne ellipsoids
with two parametrisations (but same volume), which have
been studied in the past in standard GB form: namely,
uniaxial34 (with σx = σy = 1 σ0, σz = 3 σ0, and εx = εy

= 1 ε0, εz = 0.2 ε0) and biaxial35 (with σx = 1.4 σ0, σy

= 0.714 σ0, σz = 3 σ0, and εx = 1.7 ε0, εy = 1 ε0,
εz = 0.2 ε0). For both parametrisations the GB empiri-
cal tuning exponents μ, ν were μ = 1 and ν = 3. These
models of thermotropic calamitic mesogens give isotropic,
nematic, and smectic phases. The repulsive SC surfaces
considered in this work are shown in Figure 1 for the
side–by–side configuration, and have slopes m ranging from
m = −20 ε0 σ−1

0 (fairly soft) to m = −100 ε0 σ−1
0 (scantly

soft). The switching function was characterised by an inflec-
tion point of steepness k = −70σ−1

0 , and a threshold value
‖1 − f ‖ = 10−6 for its cut-off.

III. SIMULATION RESULTS

Before going into the details of our results for uniax-
ial and biaxial particles, we note that we have identified the
isotropic–nematic (I–N) transition temperature as that of the
state point with mean order parameter 〈R2

0,0〉 ≥ 0.3, while a
transition to a biaxial (nematic) phase was assigned whenever
〈R2

2,2〉 ≥ 0.1. The spontaneous formation of layered struc-
tures, as characterised by peaks in the radial distribution func-

tion parallel to the director, g(r‖), and also visible in the
snapshots of MD samples identifies the transition to smec-
tic phases. All thermodynamical quantities have been ex-
pressed in their dimensionless form, e.g., mass m/m0, energy
U/ε0, temperature T/(k−1

B ε0), pressure P/(σ−3
0 ε0). Moreover,

to verify if the various SC parametrisations provide similar
liquid crystal stability ranges, we have plotted most observ-
ables against reduced temperature T/TIN, where TIN identi-
fies the spontaneous I–N ordering transition (if any) for each
parametrisation.

A. Uniaxial particles

The first family of SC systems considered are those
based on a standard uniaxial GB model showing isotropic,
nematic, and smectic phases.34 These simulations allow us
to study the effect of softness in an ellipsoidal GBSC model,
as tuned by changing the slope m of the repulsive part of
the potential (see Figure 1), on the capability of forming
anisotropic ordered fluid phases by spontaneously aligning
the principal molecular axis. Surprisingly, a small degree of
softness (m = −100 ε0 σ−1

0 , and m = −80 ε0 σ−1
0 ) stabilises

the ordered phases, and the I–N transition is shifted to higher
temperatures (TIN increases by ≈52% for m = −100 ε0 σ−1

0
and ≈38% for m = −80 ε0 σ−1

0 ) compared to the standard
GB model. For intermediate softnesses (m = −60 ε0 σ−1

0 and
m = −40 ε0 σ−1

0 ) the I–N transition is still higher but now
closer to the standard GB transition (respectively, ≈25% and
≈5%). In particular, the latter parametrisation closely follows
the phase diagram of the standard GB in the smectic and
nematic regions, and deviates only in giving a slightly higher
I–N transition temperature. Increasing softness even more
(m = −30 ε0 σ−1

0 and m = −20 ε0 σ−1
0 ) reduces the

anisotropy of the GBSC model, destabilises the ordered
phases with the effect that the I–N transition is now shifted to
low temperatures (respectively, by ≈ −5% and ≈ −16%).

Comparing these MD simulation results with those for
the standard core GB potential we see that, as the potential
softness increases, the number of thermally accessible states
with positive energies grows also, especially for T/TIN ≥ 1;
leading to the mean potential energies becoming positive at
high temperatures. As a consequence of this, all SC models
have energies higher than the corresponding one for the
standard GB model. The average dimensionless energy
per particle 〈U 〉/ε0 plotted for the various parametrisation
against the reduced temperature (see Figure 2(a)) does not
exhibit significant discontinuities across the temperature
range, and the spontaneous ordering transitions appear to
be either very weakly first order (or even of second order
character).

The corresponding plot for the dimensionless pres-
sure (Figure 2(b)) shows that the moderately SC models
systematically exhibit a higher 〈P 〉 (σ−3

0 ε0) than the stan-
dard GB parametrisation, while the even softer ones
(m/(ε0 σ−1

0 ) = −40, −30, and −20) have in contrast a
smaller average pressure. So, in SC systems the repulsive
contribution arising from the virial can be either larger
or smaller than that in the standard model. The unusual
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FIG. 2. The average dimensionless potential energy 〈U〉/ε0 (plate A), pressure 〈P 〉 (σ−3
0 ε0) (plate B), compressibility factor 〈P 〉/(ρkBT ) (plate C), and the

second virial coefficient B2 (plate D) plotted against the reduced temperature T/TIN for uniaxial ellipsoids modelled either with the standard GB potential (see
Ref. 34) or the GBSC parametrisation described in the text. The soft–core energy slopes were m/(ε0 σ−1

0 ) = −100, −80, −60, −40, and −30, while the logistic

function steepness was k = −70 σ−1
0 . The results from the NV T MD simulation of the standard uniaxial GB model (see Ref. 34) are also plotted. The rms

errors computed, as described in the text, from a block average analysis of the simulation results (see supplementary material of Ref. 46) are also plotted as error
bars, however, their size smaller than that of the symbols makes them hardly visible. For every SC parametrisation studied TIN is the specific nematic–isotropic
transition temperature, respectively, TIN/(k−1

B ε0) = 5.55, 5.05, 4.55, 3.85, and 3.45. The thick grey lines join the I–N and N–Sm transition temperatures for the
GBSC models. The standard GB model has instead TIN/(k−1

B ε0) = 3.65. The state points have been computed from MD simulations in the NV T ensemble for
N = 1024 particles samples at dimensionless density (N/V ) σ 3

0 = 0.3.

behaviour in the pressure with respect to the standard case
can be interpreted by considering the net balance in the virial
between two competing effects: the profile of the GBSC
potential for distances smaller than the seaming point, and the
increasing number of thermally accessible low repulsive en-
ergy states in the liquid region of the phase diagram. A feature
common to all parameterisations studied is that in the seam-
ing region the GBSC potential energy is slightly steeper than
the standard GB model, and this accounts for slightly (ap-
proximately 5% – 10%) stronger repulsions before the force
drops to the constant SC value. In addition to that, for the
uniaxial models with m = −100 ε0 σ−1

0 and m = −80 ε0 σ−1
0

the SC surface is still relatively steep and even though
the population in the r < σ (ω) region is small, this also
contributes towards raising the virial term in the pressure.
As softness increases to m = −40 ε0 σ−1

0 and larger values,
the r < σ (ω) region becomes progressively more populated,
but since this is accompanied at the same time by a large
increase in the number of thermally accessible low repulsive

energy states the combined effect is that of lowering the virial
contribution to the pressure with respect to the standard GB
model.

The compressibility factor Z = 〈P 〉/(ρkBT )
(Figure 2(c)) allows an easier comparison of these properties
for the various parametrisations: while the softer systems
with m/(ε0 σ−1

0 ) = −40, −30, and −20 have a 〈P 〉/(ρkBT )
ratio smaller than the one for the standard model over the
entire temperature range (with the exception of a few
low–temperature smectic points for m = −40 ε0 σ−1

0 ), the
moderately soft parametrisations with m/(ε0 σ−1

0 ) = −100,
−80, and −60 show two different regions across the temper-
ature range and give a smaller compressibility factor in the
isotropic and low–ordered nematic range, while in the highly
ordered nematic and smectic phases 〈P 〉/(ρkBT ) become
larger than the standard model. We also notice that for the
SC systems the compressibility factor profiles have both a
weaker temperature dependence and a similar shape, while
being approximately parallel to each other.
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FIG. 3. The orientational order parameter 〈R2
00〉 plotted against dimensionless temperature T/(k−1

B ε0) (plate A), and reduced temperature T/TIN (plate B), for

the GBSC uniaxial ellipsoids of various softness m/(ε0 σ−1
0 ) = −100, −80, −60, −40, −30, and −20 as described in the text. (See the legend of Figure 2 for

additional details.)

The change in balance between attractive and repulsive
interactions, is in turn manifested by a change in the second
virial coefficient B2 as a function of temperature

B2(T ) = 1

2Vω

∫
dω2dωr

×
∫ ∞

0
(1 − exp[−UGBSC(r,ω2,ωr)/(kBT )]) r2dr,

(5)

where the first particle is kept fixed in the origin, and
Vω = 16π2 for uniaxial particles and Vω = 32π3 for biaxial
ones. A positive (or negative) B2 indicates a dominance of
repulsive (or attractive) interactions. We recall that in thermo-
dynamic terms B2 represents deviations from ideality in a gas
resulting from pair interactions: PV/(RT ) = 1 + B2(T )/V .
However, B2 also plays a key role in colloidal suspensions47

and polymer solutions. Here,48 the osmotic pressure can be
expanded in terms of concentration with B2 identified as the
second osmotic virial coefficient. In this work, we have eval-
uated B2 via integration using Eq. (5) for our soft Gay–Berne
potential (Figure 2(d)). Integrals over the orientations have
been computed using 32 Gauss–Legendre points for each an-
gular dimension. The introduction of a small degree of soft-
ness (m/(ε0 σ−1

0 ) = −100, −80, and −60) is clearly reflected
in an increase in B2, corresponding to a net repulsion inte-
grated over angles, which in our case provides a rationale for
the increase in stability of nematic phases for these poten-
tials in comparison to the standard GB potential. Conversely,
the softer variants of the GBSC potential have consistently
smaller values of B2 than seen for the standard Gay–Berne.

A more pronounced effect of softness was found
for the average uniaxial orientational order parameter
〈R2

0,0〉 ≡ S = 〈[3(zi · n)2 − 1]/2〉, where n is the principal
director, and zi are the long molecular axes (all as unit vec-
tors), and S is the standard symbol used in the Maier–Saupe
model of nematics. The plot of 〈R2

00〉 against temperature
(Figure 3(a)) shows the effect of softness on the spontaneous
I–N transition temperatures. These curves are similar but

not completely superimposable when plotted with respect
to T/TIN, as we can see from Figure 3(b). This plot shows
that the SC systems consistently have smaller 〈R2

00〉 order
parameters than the standard model at the same T/TIN. This
can be interpreted in terms of a decreased tendency to align
arising from the weaker hard core repulsions and a reduced
effective volume.

The position of the first maximum of the radial cor-
relation function, g(r) for nematic phases of standard and
GBSC ellipsoids with similar orientational order parameter
〈R2

00〉 ≈ 0.8 (see Figure 4) is practically unaffected by the par-
ticle softness, while the second maximum shows a small shift
towards larger separations. Correspondingly, the height of the
maxima is lowered as m increases and the longer range struc-
ture in the fluid is smoothed out. The principal effect of soft-
ness on the radial correlation function appears to be the pro-
gressive population of the short–distance range corresponding
to extensive particles interpenetration. However, only pairs of
ellipsoids with large m populate the bins of g(r) with r 
 σ0

(i.e., only the softest particles may have significant overlap).
The two insets in Figure 4 show that particle softness does
not determine significant changes, with respect to the standard
model, in the radial distribution functions parallel to the direc-
tor g(r‖). This is also the case for the perpendicular ones g(r⊥)
apart for a modest population increase in the r 
 σ0 bins.

In summary, these MD simulation results suggest that
there are two competing effects with opposite influence on
the mesogenic properties of elongated GBSC ellipsoids: (a)
the softness allows an easier (lower energy) anisotropic close
packing into mesogenic structures; and (b) the softness also
mellows the effective anisotropy of the GBSC potential by
widening the potential energy surface accessible at any given
kBT . These features affect the phase diagrams for all SC
parametrisations studied in this work (see Figure 5), like the
N sample of Figure 6, with 〈R2

0,0〉 = 0.871 ± 0.001, formed
by uniaxial GBSC ellipsoids of softness m = −30 ε0 σ−1

0 at a
dimensionless temperature T/(k−1

B ε0) = 2.2 (the correspond-
ing standard uniaxial GB system34 is smectic). We therefore
conclude that the softness of the potential can be effectively
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FIG. 4. The radial correlation function g(r) for nematic phases with simi-
lar orientational order parameter 〈R2

00〉 ≈ 0.8 formed by standard and GBSC

uniaxial ellipsoids of various softness m/(ε0 σ−1
0 ) = −100, −80, −60, −40,

−30, and −20 at dimensionless temperatures T/(k−1
B ε0) = 2.8, 3.5, 3.3, 3.1,

2.8, 2.6, and 2.3 as described in the text. The radial distribution functions
parallel (g(r‖)), and perpendicular (g(r⊥)) to the director are shown in the
insets. (See the legend of Figure 2 for additional details.)

tuned to either widen or narrow the nematic temperature range
by means of producing both kind of order enhancing or order
depressing effects, or even to closely match the mesogenic
properties of the standard core GB model. We therefore pre-
dict that for surface–stabilised colloidal particles, with sol-
vent responsive surface treatments (such as polymer brushes),
it should be possible to both stabilise or destabilise nematic
phase formation, simply by choice of appropriate solvent
conditions.

B. Biaxial particles

Biaxial GB ellipsoids allow for the tendency of molecules
to align along two mutually perpendicular axes, one of which

20

30
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80

100

2 3 4 5 6 7

- 
m

 / 
(σ

0−1
 ε

0)

T / (kB
-1 ε0)

  isotropic (I)

  nematic (N)

  smectic (S)

FIG. 5. The phase diagrams plotted against dimensionless tempera-
ture T/(k−1

B ε0) for the uniaxial GBSC ellipsoids of various softness
m/(ε0 σ−1

0 ) = −100, −80, −60, −40, −30, and −20 as described in the
text. Samples in the isotropic (I), nematic (N), and smectic (Sm) phases are
represented as crosses, circles, and triangles. The I–N and N–Sm transition
temperatures for the standard uniaxial GB model (see Ref. 34) are plotted as
vertical grey bars. (See the legend of Figure 2 for additional details.)

FIG. 6. Snapshot of an N sample for the uniaxial GBSC ellipsoids of softness
m = −30 ε0 σ−1

0 at T/(k−1
B ε0) = 2.2, and 〈R2

0,0〉 = 0.871 ± 0.001.

may become a macroscopic secondary director for a nematic
or smectic phase. (Although biaxial is the normal term em-
ployed in soft matter physics, accordingly to the standard
crystallographic terminology, such a macroscopically biax-
ial phase would actually be called triaxial.) To this purpose,
we have simulated a second family of GBSC particles based
on standard biaxial GB ellipsoids showing isotropic, nematic,
biaxial nematic, and biaxial smectic phases (described in
Ref. 35).

The general thermodynamic behaviour of these sys-
tems of biaxial GBSC ellipsoids resembles that of the
uniaxial ones discussed previously. As seen with uniax-
ial molecules, a small softening of the potential shifts the
I–N equilibrium to higher temperatures (29% and 11% for
m = −100 ε0 σ−1

0 , and m = −80 ε0 σ−1
0 ), an intermediate

value gives a TIN matching the standard core model
(−6% for m = −60 ε0 σ−1

0 ), and a large softness shifts the
I–N transition to lower temperatures (−23% and −34% for
m = −40 ε0 σ−1

0 , and m = −30 ε0 σ−1
0 ). All spontaneous or-

dering transitions appear to be of very weak first order (or
second order nature) since there are no significant discontinu-
ities in the energy or order parameters with temperature. (We
note that the biaxial GBSC system with m = −20 ε0 σ−1

0 does
not form a nematic phase upon cooling, so these results have
not been included here.) As a general trend we see that the
specific behaviour of these model biaxial mesogens changes
with softness and is subtly different from what observed in
the uniaxial case (see supplementary material46). All average
dimensionless energies 〈U 〉/ε0 in the isotropic and nematic
phases are higher than those for the standard GB model, and
they are not overlapped (see Figure 7(a)). As before, a small
degree of softness (m = −100 ε0 σ−1

0 , and m = −80 ε0 σ−1
0 )

stabilises the ordered phases, and the I–N transition for these
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FIG. 7. The average dimensionless potential energy 〈U〉/ε0 (plate A), pressure 〈P 〉 /(σ−3
0 ε0) (plate B), compressibility factor 〈P 〉/(ρkBT ) (plate C), and second

virial coefficient B2 (plate D) plotted as a functions of reduced temperature T/TIN for biaxial ellipsoids modelled either with the standard GB potential (see
Ref. 35) or the GBSC parametrisation described in the text. The soft–core energy slopes were m/(ε0 σ−1

0 ) = −100, −80, −60, −40, and −30, while the logistic

function steepness was k = −70 σ−1
0 . The biaxial system with m = −20 ε0 σ−1

0 does not form a nematic phase upon cooling. The points from the NV T MD
simulation of the standard biaxial GB model (see Ref. 35) are also plotted. The rms errors computed, as described in the text, from a block average analysis
of the simulation results (see supplementary material of Ref. 46) are also plotted as error bars, however their size smaller than that of the symbols makes
them hardly visible. For every SC parametrisation studied TIN is the specific nematic–isotropic transition temperature, respectively TIN/(k−1

B ε0) = 6.15, 5.25,
4.45, 3.65, and 3.15. The thick grey lines join the I–N, N–Nb, and Nb–Sb transition temperatures for the GBSC models. The standard biaxial GB model has
instead TIN/(k−1

B ε0) = 4.75. The state points have been computed from MD simulations in the NV T ensemble for N = 1024 particles samples at dimensionless
number density (N/V ) σ 3

0 = 0.3.

models is shifted to higher temperatures (see Figure 8(a)).
The intermediate m = −60 ε0 σ−1

0 closely matches the stan-
dard GB model, while the softer m = −40 ε0 σ−1

0 , and m

= −30 ε0 σ−1
0 occur at lower temperatures. The average pres-

sure has a behaviour similar to that observed for the uni-
axial model. In particular, 〈P 〉/(σ−3

0 ε0) is higher than the
standard model only for m = −100 ε0 σ−1

0 (and at low tem-
perature also for m = −80 ε0 σ−1

0 ), while all other parametri-
sations provide systems with a systematically lower pressure
(see Figure 7(b)) than the parent GB. The compressibility fac-
tors for the biaxial SC models in the uniaxial nematic region
have a very small temperature dependence and are almost
constant (see Figure 7(c)), while the 〈P 〉/(ρkBT ) ratio for the
standard system varies strictly monotonically with T/TIN.

The second virial coefficients, B2 (in Figure 7(d)),
provides additional insights. The m = −100 ε0 σ−1

0 , and
m = −80 ε0 σ−1

0 values produce B2 values larger than those
seen in the parent GB system, promoting mesogenic ordering
at high temperatures. The m = −60 ε0 σ−1

0 system is very

close to the standard system and, as expected, the softer
potentials consistently show smaller values of B2. For all
SC biaxial parametrisations we see that the plateau in B2 is
essentially reached before TIN.

The effect of softness on the temperature dependence of
the order parameters is particularly interesting. We see that
for a given T/TIN the values of 〈R2

0,0〉 have trends similar to
those observed for the uniaxial models both with respect to
dimensionless (see Figure 8(a)) and reduced (see Figure 8(b))
temperature. In the latter plot we see that the order parame-
ter profiles for the various m are not superimposable within
statistical uncertainty of the average values.

The plot of the biaxial order parameter35 〈R2
2,2〉 = 〈[(xi ·

l)2 − (xi · m)2 − (yi · l)2 + (yi · m)2]/4〉, where m, and l are
the secondary directors, and xi , yi are the transverse molec-
ular axes, shows (see Figure 8(c)) that a moderate soft-
ness (m = −100 ε0 σ−1

0 ) slightly stabilises the biaxial nematic
phase and shifts the N–Nb transition to a higher dimension-
less temperature compared to the standard model (≈3%),
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FIG. 8. The orientational order parameters 〈R2
00〉 and 〈R2

22〉 plotted against dimensionless temperature T/(k−1
B ε0) (plate A, uniaxial; plate C, biaxial), and

reduced temperature T/TIN (plate B, uniaxial; plate D, biaxial), for the biaxial GBSC ellipsoids of various softness m/(ε0 σ−1
0 ) = −100, −80, −60, −40, and

−30 as described in the text. (See the legend of Figure 7 for additional details.)

while for the m/(ε0 σ−1
0 ) = −80, −60, −40, and −30 mod-

els this transition shifts to lower temperatures (respectively,
≈ −6%, ≈ −14%, ≈ −25%, and ≈ −31%). The variation of
〈R2

2,2〉 with T/TIN (see Figure 8(d)) reveals again that also
the biaxial GBSC parametrisations are not corresponding to
the same general model, and that different m values provide
both higher and lower 〈R2

2,2〉 at the same reduced temperature
compared to the standard biaxial model. We notice that the
low–temperature trend of 〈R2

2,2〉 for m = −30 ε0 σ−1
0 shows a

drop in biaxiality which hints to possible equilibration prob-
lems for these samples. For this slope m we have not found
layered smectic organisations within the range of explored
temperatures.

A summary of the properties of these biaxial GBSC sys-
tems can be extracted from the phase diagrams of Figure 9.
We find that particle softness provides a high degree of tun-
ing for a thermotropic biaxial nematic phase: taking the par-
ent GB model as reference, the particle softness can extend
the stability of the Nb phase to lower temperatures, widen or
narrow the biaxial nematic range (Figure 9), or even provide
larger values of the 〈R2

2,2〉 order parameter. An example of this
is given by the snapshot of Figure 10 showing a Nb sample,
with 〈R2

0,0〉 = 0.831 ± 0.001, and 〈R2
2,2〉 = 0.262 ± 0.004,

formed by GBSC ellipsoids of softness m = −40 ε0 σ−1
0 at a

dimensionless temperature T/(k−1
B ε0) = 2.4 (the correspond-

ing standard biaxial GB system35 is well within the Sb

phase).
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FIG. 9. The phase diagrams plotted against dimensionless temperature
T/(k−1

B ε0) for the biaxial GBSC ellipsoids of various softness m/(ε0 σ−1
0 )

= −100, −80, −60, −40, and −30 as described in the text, and in the legend
of Figure 7. Samples in the isotropic (I), nematic (N), biaxial nematic (Nb),
and biaxial smectic (Sb) phases are represented as crosses, circles, squares,
and triangles. The I–N, N–Nb, and Nb–Sb transition temperatures for the stan-
dard biaxial GB model (see Ref. 35) are plotted as vertical grey bars.
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FIG. 10. Snapshot of a Nb sample for the biaxial GBSC ellipsoids of softness
m = −40 ε0 σ−1

0 at T/(k−1
B ε0) = 2.4, 〈R2

0,0〉 = 0.831 ± 0.001, and 〈R2
2,2〉= 0.262 ± 0.004.

It is interesting to note that until quite recent studies1 it
has proved extremely difficult to obtain low molecular weight
thermotropic mesogens which exhibit biaxial phases,49 while
such phases have been observed for some time in lyotropic
systems.50 It seems possible that the softness of the typical
pair potential seen for the latter, and the subsequent exten-
sion of the range of biaxial stability (as seen in this work) is a
contributing factor to this. We therefore suggest that the intro-
duction of softness, in the form of conformational flexibility,
may be a way to promote biaxiality in low molecular weight
thermotropic systems.

IV. CONCLUSIONS

We have determined by MD computer simulations the
phase diagrams of two families of uniaxial and biaxial soft–
core ellipsoids interacting with a modified anisotropic GB
pair potential. These potentials can be considered as appro-
priate coarse–grained models for a number of systems: very
flexible mesogens such as multipodes1 or dendrimers (where
conformational flexibility allows for significant interpenetra-
tion of the “molecular envelopes”); or soft colloidal meso-
genic particles or star polymers.

The MD simulation results show how particle softness
affects the mesogenic behaviour by stabilising (moderate de-
gree of softness) or destabilising (large degree of softness)
the mesogenic properties, and also by shifting the temper-
ature of the ordering transitions. This effect is particularly
pronounced for biaxial particles, and as an important new re-
sult we have found that a moderate particle softness actually
strongly stabilises low–temperature biaxial nematic organisa-
tion against the formation of smectic or crystal phases. Such

an effect has been seen in experimental reports of the for-
mation of a low temperature biaxial nematic in a class of
flexible siloxane tetrapodes.1 For systems of colloidal par-
ticles stabilised by surface treatment, particle softness can
often be made to be highly sensitive to the quality of the sol-
vent. Such systems would provide an interesting experimental
test of the predictions made here, and may well lead to solvent
tunable biaxial phases. For thermotropics, this work points to
the possibility of using semi–flexible (possibly deformable)
mesogens, which can form soft particles with a biaxial shape.
Such systems, may prove to be another possible architec-
ture for designing room temperature thermotropic biaxial
nematics.

Finally, we note that anisotropic soft–core potentials,
such as the ones studied in this work, are likely to have a wide
range of future potential applications in soft matter physics. In
systems as diverse as colloids, star polymers, soft deformable
nanoparticles, liquid crystals and microgels, particle softness
can play a key role in determining self–assembling and phys-
ical properties.
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