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Abstract. We study a lattice system of biaxial particles interacting with a 
second rank anisotropic potential by means of  Monte Carlo simulations over a 
wide distributed network.  We use the Condor   processing system installed on 
the Italian Nuclear Physics Institute computer network. We have done 
calculations for a large number of different values of molecular biaxiality and 
we have determined a phase diagram for the system that we compare with 
previous simulations. The results of this work  seems to be very  promising  and 
will allow us to use the Condor  system for  our large scale simulation studies.  

1 Introduction 

Computer simulations are a useful tool for investigating many fields of physics and 
are currently widely used in  condensed matter research.  We are interested in 
studying states of condensed matter intermediate between solids and liquids. These 
states are  indicated by the somewhat contradictory  name of liquid crystals (LC) and 
consist of various phases with different molecular organizations [1]. The main 
characteristic of liquid crystals at molecular level is that they posses s orientational 
order, together with a translational mobility similar to that of liquids in nematic 
phases and reduced in other, so called smectic, types. A theoretical investigation of 
LC can be  undertaken, as for any other complex fluids, by means of approximate 
theories or by performing numerical experiments on models. The Monte Carlo 
method, one of the foremost simulation techniques [2], commonly used in studying 
phase transitions and critical phenomena, plays an important role also in the 
investigation of liquid crystals [3]. One of the most important approaches  deals with 
lattice models [3] where the molecules, or tightly ordered cluster of molecules, 
represented by three dimensional unit vectors (“spins”) are considered to have a fixed 
position at the lattice sites.  The spins possess full rotational freedom, subject to a 
certain intermolecular potential, so that this restriction does not affect their long range 
orientational ordering.   The main advantage in using lattice models is the great 
number of particles which can be treated in comparison with off-lattice systems.  A 
detailed investigation of these models requires, however,  a very significant amount of 
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computing power which can imply using parallel computing, typically when studying 
large lattices,  or employing distributed resources for smaller lattices but with many 
different values of parameters corresponding to different physical conditions. 
 Here we wish to present a distributed approach for studying a  biaxial liquid crystal 
model by means of the  software CONDOR [4]  developed at the Computer Science 
Department at the University of Wisconsin-Madison and implemented on the network 
of the Italian National Institute for Nuclear Physics. The  paper is organized as 
follows: first we briefly summarize the main features of  the Monte Carlo simulation 
model;  then we describe the CONDOR software and finally  we discuss how we have 
performed the simulations of the biaxial liquid crystal system. 

2  The Biaxial Liquid Crystal Lattice Model 

The prototype lattice model for modelling nematic liquid crystals formed of uniaxial 
molecules was  devised  many years ago by  Lebwohl and Lasher (LL)  [5] and is  the 
simplest one with the  correct symmetry for  nematics (in particular the potential is 
invariant for an head-tail flip of the molecules).  The LL interaction tends to bring 
molecules parallel to one another and effectively models whatever underlying 
intermolecular interaction either attractive or repulsive that does that.  While in this 
model, as in the large majority of theoretical calculations of liquid crystals, the 
mesogenic molecules are assumed to be cylindrically  symmetric, it is important to 
recall that nematogenic molecules are invariably non cylindrically symmetric and that 
a much more realistic approximation is to treat them at least as  biaxial objects.  A 
simple lattice model of a biaxial system is defined by the second rank  attractive pair 
potential [6]: 

U(ωij) = - ε ij  P2 (cos β ij ) + 2 λ [ R02
2(ωij) + R20

2(ωij) ] + 4 λ2 R22
2(ωij)  (1) 

 
where  ε ij is a positive constant, ε, for nearest neighbour molecules i and  j and zero 
otherwise, P2  is the second  Legendre polynomial. ω ≡  (α , β, γ) is the set of  Euler 
angles specifying the orientation of a molecule and  Rmn

L are  symmetrized 
combinations of  Wigner functions [7]. The parameter λ takes into  account the 
deviation from cylindrical molecular  symmetry: when λ is zero, the biaxial potential 
reduces to the   Lebwohl - Lasher P2  one , while for λ   different from zero the 
particles tend  to align not only their major axis, but also their short axis. In this latter 
case  and varying the temperature then there is the presence of different orientational 
phases (see Fig. 1), as shown   by Luckhurst and Romano  for  λ =0.2  [8] and by  us 
on a L x  L x  L cubic lattice for a fairly large set  of biaxialities [9]. 
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Fig. 1   Phase diagram showing the transition temperature TC  (in reduced units T* =kT/ε)  vs. λ 
as obtained by  MC simulations (symbols) and Mean Field Theory (lines)  from Ref.  [9]. N+, 
N-,B represent regions of uniaxial and biaxial nematic phases. 

 
The Monte Carlo simulation are performed  using a standard Metropolis algorithm 
[10]  with periodic boundary conditions for the lattice updates.  The configuration of 
the system is given by a set of  N trebles of unitary vectors  uij , i=1,2,3,  where N is 
the number of particles. A new configuration is generated by moving a particle at 
random and we call a set of N attempted moves a cycle.  To change the particle 
orientation we firstly choose at random an integer number k ∈ [0,1,2 ] to identify the 
rotation axis. Then the orientation of the chosen particles is changed by generating a 
new uniformly distributed random value of the rotation angle. The maximum angular 
jump is chosen so as to maintain a rejection ratio not too far from 0.5. In this 
preliminary work we have used at least  30000  equilibration cycles far from the 
transition  and 40000  in the pseudo critical regions. Apart from equilibration, 
production runs were also of varying length,   according to the distance from the 
transition. Close to a phase change typical sequences of 20 kcycles have been used to 
produce the averages. We routinely determine a number of observables. In particular 
we calculate the heat capacity  by differentiating the energy against temperature and  
the full set of second rank order parameters which are essential to define the different 
type of ordering in the different phases [9]. 

 
 



 
 
 
3 The   CONDOR Processing System 

 
CONDOR [4] is a processing system that allows the use of very large collections of 
available non-dedicated, pre-existing computing resources, such as (but not only) 
personal workstations or other distributed ownership machines. CONDOR provides 
an environment (a CONDOR Pool) for High Throughput Computing (HTC).  The key 
idea of HTC is to use large amounts of computing power for very lengthy periods, 
with no concern in the instantaneous performance of the system typical of the 
traditional High Performance Computing (HPC). CONDOR creates a HTC 
environment by assigning idle CPUs (CPUs not used by their owners) belonging to 
the Pool, to jobs submitted by other machines in the Pool. When the owner starts 
using the workstation which a CONDOR  job is running on, the job is suspended, and 
eventually a checkpoint of the job (a snapshot of the current state of a program) is 
done and the job migrates over the network to another idle machine in the Pool, on 
which the job is restarted from precisely where it left off.  If no machine in the Pool is 
available, then the checkpoint is stored on disk until a machine becomes available. 
CONDOR also makes periodic checkpointing, providing fault tolerance. In this way 
two results are fulfilled: 1)  the owner of the workstation should not notice any impact 
on the use of the workstation itself, 2) the job, migrating from one machine to 
another, restarting from the last checkpoint, will eventually come to the end of its 
execution. The Italian National Institute for Nuclear Physics (INFN) has  developed  a 
wide academic computer network  linking its 24  sites since 1982. In 1998 the INFN 
project of building a CONDOR Pool over the INFN network was started, using 
already existing machines in many INFN sites. The Pool has been used by many 
INFN groups. In 1999 the equivalent of 38 years of CPU have been deployed. The 
Pool has presently more than 200 Unix machines, mainly Compaq Alpha and  Linux 
PC. 
 

 
4  LC Simulations Using the INFN CONDOR Pool  

 
We have started to use the INFN CONDOR Pool for  Monte Carlo simulation of the  
Liquid Crystal model formed by  biaxia l molecules  to test if this processing system 
can be used for further studies in our research field.  As can be seen from equation 1)  
the intermolecular potential depends on the biaxiality parameter  λ,  which has to be 
varied to  study in detail the model. Of course for each value of  λ   an independent 
simulation has to be performed over a wide range of temperatures. This problem is 
then in principle well suited for the use of CONDOR  because each simulation can be 
submitted on different computers.  In this way we can send a CONDOR job for each 
value of the parameter, performing many simulations in parallel. For each value of the 
parameter λ we start the simulation with a low temperature from a totally aligned 
configuration of the molecules.  For each of the subsequent temperatures the starting 
configuration was the last one of the previous temperature. We thus need a system for 



taking into account these jobs' dependencies (the job for a temperature mu st only start 
when the run of the previous job is completed). This mechanism is provided by 
CONDOR with a tool called DAGMan (Directed Acyclic Graph Manager). In this 
way we can submit a job for each temperature and for each value of the parameter λ, 
but only one job for each value of the parameter λ  (corresponding to a particular 
temperature) is executing at any time. We have made the simulation for 15 values of 
the parameter λ  and about 20 values of the temperature for each of them. So the total 
number of jobs submitted was about 300. CONDOR took care of the sequencing and 
the management (checkpointing, migration etc.) of all these jobs.  We have performed 
the simulations of a  40 x 40 x 40 lattice system  and we have been able to reproduce 
the complete study performed some years ago [9]  in just two weeks.  In Fig.2 we 
report as an example a plot of the orientational order <P2>=<3 cos2β-1>/2, where β is 
the angle between long molecular axis and preferred ordering direction, as a function 
of reduced temperature obtained from our CONDOR runs at various λ. 
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Fig. 2  A summary plot of the orientational order <P2>  for models of various biaxiality λ as a 
function of  the reduced transition temperature T* =kT/ε. 

 
In practice we have submitted our jobs to a CONDOR Pool of 70 Linux  PCs but  
imposing the condition that the processor speed  should be at least 200 MIPS. We 
report in Table 1 an excerpt of the log file  for the simulation of  the case  λ =0.3 
where the machines used  can be identified, together with  the values of some 
performance parameters, such as the CPU Usage. 

 
 



Host/Job  Wall 
Time 
(hours)  

Good 
Time 
(hours)  

CPU 
Usage 
(hours)  

Avg Alloc 
(minutes)  

Avg  Lost  
(minutes)  

Goodput  Util.  

p3d450.bo.infn.it  44 44 43 872  0 100.0% 97 
chandra.bo.infn.it        47 47 47 565  0 100.0% 99 
Pcmzz.bo.infn.it  19 19 19 564 0 100.0% 99 
Pceng2.bo.infn.it  50 50 50 745 0 100.0% 99 
linux1.ba.infn.it  0 0 0 0 0 0.0 % 0 
to414xl.to.infn.it  27 27 26 536 0 100.0% 99 
to44xl.to.infn.it  13 13 13 763 0 100.0% 99 
pcl3c.bo.infn.it  12 12 12 705 0 100.0% 99 
pcglob.bo.infn.it  22 22 22 658 0 100.0% 99 
Pceng4.bo.infn.it  13 13 13 756 0 100.0% 99 
Pceng3.bo.infn.it  13 13 13 751 0 100.0% 99 
to40xl.to.infn.it  2 0 0 133 133 0.0% 0 
  

Table 1 

From the log file we can check  that we have used 16 PCs for a total of about 1700 
hours CPU time. Since we estimated that a full study of the phase diagram, should 
take at least ten times as much, particularly because of the need of very long runs near 
the transition and of refining the grid on the biaxiality parameter λ, we see that the use 
of distributed resources afforded by CONDOR is particularly useful and could make 
possible detailed and systematic studies of  this type of models in a way not easily 
possible until now. 

References 

1. de Gennes, P.G., The Physics of Liquid Crystals, Clarendon Press, Oxford (1972). 
2. Allen, M.P.  and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, 

Oxford (1987). 
3. Pasini, P. and Zannoni, C, (eds.)  Advances in the Computer Simulations of Liquid 

Crystals, Kluwer, Dordrecht,  (2000) . 
4. http://www.cs.wisc.edu/condor/ 
5. Lebwohl, P.A.  and  Lasher, G.,   Phys. Rev. A   6 , (1972) 426. 
6. Luckhurst, G.R,  Zannoni, C.,  Nordio, P.L.  and  Segre, U.,   Mol. Phys., 30,  (1975) 1345. 
7. Rose, M.E.,    Elementary Theory of Angular Momentum, Wiley, N.Y.  (1957). 
8. Luckhurst, G.R,  and  Romano, S.,  Mol. Phys. 40,  (1980) 129. 
9. Biscarini, F.,  Chiccoli, C., Pasini, P., Semeria F., and  Zannoni, C.,  Phys. Rev. Lett. 75, 

(1995) 1803. 
10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N, Teller, A.H.  and Teller, E.,  J. 

Chem. Phys.  21, (1953) 1087. 




