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Monte Carlo Investigations of a Gay-Berne Liquid Crystal 

Roberto Berardi, Andrew P. J. Emersont and Claudio Zannoni* 
Dipartimento di Chimica Fisica ed Inorganica , Universita, Viale Risorgimento 4,40136 Bologna, Italy 

We report extensive Monte Carlo simulations of two systems with 512 and 1000 particles interacting with a 
Gay-Berne potential with strength parameters (p  = 1, v = 3) that enhance the side-by-side and end-to-end inter- 
actions between the particles. We show that the system has a smectic, nematic and isotropic phase and we 
calculate the order parameters (P,), (P,), the intermolecular vector distribution and other relevant observ- 
ables a s  a function of temperature at a scaled density p* = 0.30. 

1. Introduction lational freedom have involved a number of particles, N, 

Computer simulations of liquid crystals, although not nearly 
as abundant as simulations of ordinary liquids have started 
to become an important way of studying this fascinating cate- 
gory of fluids.' A number of simulations have appeared 
involving simple lattice hard ellipsoids and 
spherocy1inders:-6 anisotropic Lennard-Jones,' Berne- 
~echukas-Kushi~k~- '~  and more recently Gay-Bernel'-" 
models. All of these simulations, although based on models of 
very different complexity and, possibly, of realism, rely on 
approximating each particle with one anisotropic object or 
interaction centre. A limited number of more realistic multi- 
centre approximations have also a~pea red , '~ -~ '  even though 
with a relatively small number of molecules. These kinds of 
simulations are important for looking at the detailed environ- 
ment around a molecule but are probably not yet completely 
ripe for looking at phase transition and collective properties, 
where the requirement of large samples calls for simpler 
models. 

The Gay-Berne (GB) model" is a sort of anisotropic 
Lennard-Jones potential that is rapidly becoming a proto- 
type for simulations of liquid crystals."-18 The potential has 
an attractive and repulsive part decreasing with separation r 
as r-6 and r-l2 but with a rather complex form (cf: Section 
1.1) that depends on the particle orientations as well as the 
intermolecular vector. The form of the Gay-Berne potential 
employed in most studies"-'8 is a modified version of the 
gaussian overlap potential of Berne-Pechukas-K~shick'.~ 
that allows for a change in well depth and width when the 
orientation of the molecules, with respect to the intermolecu- 
lar vector, changes.22 

The main characteristic of liquid crystals, and what makes 
them particularly difficult to study and simulate, is the exis- 
tence of orientational and possibly positional order and the 
presence of transitions between phases where some of these 
order parameters vanish. A transition of particular impor- 
tance is the nematic-isotropic one, where the orientational 
order goes to zero. This transition is experimentally of a 
weak first-order character and presents strong pretransitional 
effects.23 While rather detailed studies of this orientational 
transition3rZ4 and other applications [see, e.g., ref. 25, 261 
have appeared and continue to appear for lattice models, 
most of the studies on the more complex systems with trans- 
lational freedom have concentrated on proving the existence 
of one or more ordered phases and in sketching a phase 
diagram.12-18 The number of particles employed in these 
various studies is also necessarily rather different. Thus lattice 
models have comprised systems of up to a few tens of thou- 
sand particles, while simulations of particles with trans- 
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ranging from 108 and 168," to 256,'3.14*16 to 500 and, in a 
limited number of runs, to 800.14 

In this paper we wish to examine two systems of N = 512 
and N = 1000 Gay-Berne particles with a parameterization 
to be discussed in some detail in the next section. We choose 
a certain density and perform heating and cooling tem- 
perature scans in rather small increments, to start and 
examine the phase transitions in some detail, at least as far as 
it is allowed by the sample size available. We also calculate 
second-rank and fourth-rank order parameters and the dis- 
tribution of intermolecular vector as a function of tem- 
perature. We believe this to be important if comparison with 
approximate analytical theories has to be performed. A com- 
parison is also provided between the parameterization 
employed here and that of various previous studies.''-17 

1.1 The Gay-Berne Potential 

The anisotropic interaction between two particles i and j, 
which we can think as ellipsoids of revolution, with orienta- 
tions given by unit vectors ui and uj and with centres separ- 
ated by the intermolecular vector r can be written according 
to the GB model as:" 

where i is a unit vector along the intermolecular vector. The 
parameterization of the potential is rather complex but basi- 
cally it can be related to shape and attractive energy aniso- 
tropy. The information about the shape of the particles is 
contained in the orientation dependent range parameter o: 

where x is determined by the shape anisotropy, K r a,/as of 
the particles: 

Here a,, a, are size parameters reflecting the length and 
breadth of the particles. More precisely a, and a, are the 
separations at which the attractive and repulsive terms in the 
potential cancel when the molecules are in the end-to-end 
and side-by-side configuration. 
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Table 1 Strength of interaction function 4ui, uj, F )  for selected 
intermolecular configurations 

configuration 4ui, u j ,  ?)/E, 2, 1 1, 3 

Here K = u,/u, and K' = EJE,. The last two columns correspond to 
different choices of (p, v) while keeping K = 3, K' = 5, E, = 1. 

The energy term in eqn. (1) can be written as proposed in 
ref. 11 

where 

and 

The parameter x' reflects the anisotropy in the attractive 
forces, 

where K' is the anisotropy ratio: K' = and E,, E, are the 
well depths for the end-to-end and side-by-side configu- 
rations. 

The significance of the parameters and the effect of chang- 
ing them can be made more apparent when considering selec- 
ted orientations,13 as we do in Table 1. 

The parameters K = 3, K' = 5, p = 2, v = 1 were considered 
in the molecular dynamics simulation works of Adams et 
al.,12 Emsley et a1.,16 de Miguel et a1.15 and a full phase 
diagram study was obtained by Chalam et al.14 Another set 
of parameters, with K = 3, K' = 5, p = 1, v = 2 was studied by 
Luckhurst et aE.13 where the existence of smectic, nematic and 
isotropic phases was clearly demonstrated, while the behav- 

Fig. 1 GB potential U& = U,,/E, corresponding to param- 
eterization~ p = 1, v = 3 (continuous line) and p = 2, v = 1 (dashed 
line) and K = 3, K' = 5 shown as a function of scaled intermolecular 
separation r*, r* = r/a,, at three orientations. (a) side-by-side (ss), (b) 
tee (T) and (c) end-to-end (ee). 

iour inside the phases was not studied in detail. The systems 
studied have varied in size between N = 25613.16 and 50014 
particles. 

In this paper we report rather extensive canonical ensem- 
ble Monte Carlo results for particles interacting with the 
p = 1, v = 3 GB potential." We have found this modified 
interaction useful in a separate study of model GB  droplet^.^' 
As far as we know this represents the first detailed study of 
the bulk behaviour of the GB potential using parameters dif- 
ferent to those proposed by Gay and Berne." q 

The use of these modified parameters has the effect of 
lowering the well depths of the end-to-end and side-by-side 
configurations (see Table 1 and Fig. 1). On the other hand, 
the shape and well-depth anisotropy of the particles remain 
the same and we might wonder if differences in phase behav- 
iour just consist of a scaling of the transition temperatures. 

We test in particular if the behaviour of the GB potential 
for various choices of coefficients is universal. In other words 
we wish to check if the order parameters and, in general, the 
thermodynamic observables at the same reduced temperature 
TIT,, are the same or not. 

2. Simulation Results and Discussion 

We have chosen GB particles with length to breadth ratio 
K = o,/o, = 3 and strength parameters K' E EJE, = 5, p = 1, 
v = 3. Monte Carlo simulations in the canonical (NVT) 
ensemble were performed on systems of N = 512 and 
N = 1000 particles interacting via the modified GB potential 
described above and with the usual cubic periodic boundary 
conditions. The scaled density p* (p* = No:/V) was chosen 
to be 0.30 and the system was studied as a function of scaled 
temperature T*, with T* = KT/EO Trial orientations of the 
particles were generated with the Barker-Watts technique2* 
and the maximum angular and positional displacements were 
adjusted to give an acceptance ratio close to 0.5. Typical 
angular displacements compatible with this acceptance ratio 
were found to be ca. 15". Adequate evolution of the system 
was achieved with this acceptance ratio. 

To reduce the computational time a spherical cutoff of 
4.00, was employed in conjunction with a Verlet neighbour 
list.29 It was found that with a list radius of 4.80, the 
program was significantly (1.5 times) faster with respect to a 
calculation with the same cutoff but without the neighbour 
list. Neighbour list update was typically performed every 5-6 
cycles (a cycle being a set of N attempted moves). Even with 
these precautions the computations are fairly heavy. For the 
N = 1000 particle systems the generation of 1000 cycles takes 
about 1 h on a Hewlett-Packard RISC workstation HP720. 

The simulations for the N = 512 particles system were 
started from an initial configuration constructed from per- 
fectly aligned particles positioned on a simple cubic lattice. 
The system was melted at a scaled temperature of T* = 5.0 7 

until isotropic, as identified by the value of (P,) calculated 
from diagonalization of the molecular 0 tensor.30 A series of 
cooling runs were then performed with the starting configu- . 
ration for each state point being taken from the simulation at 
the previous temperature. On average 10-20000 cycles were 
used for equilibration and 10000 cycles for the production 
stages but near phase transitions considerably longer runs 
were necessary (cf: Table 2). 

The N = 1000 system was started from an isotropic con- 
figuration at T* = 4.0 prepared, as before by melting, a well 
ordered system at T* = 2.0. Cooling runs were then typically 
performed in cascade, with some prolonged runs continued 
as judged necessary afterwards. Runs at temperatures higher 
than T* = 4.0 were produced in a heating sequence. More 
heating and cooling runs were performed as will be described 
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later. Data referring to these two sequences will be marked 
with appropriate superscripts (c and h) when necessary in 
what follows. This large system required very long equili- 
bration and production runs. We used at least 20000 cycles 
for equilibration and 40000 cycles for production. However, 
near the phase transitions considerably longer runs were 
necessary. In practice we went to more than 500000 cycles 
near the nematic-isotropic (both for cooling and heating 
runs) and 130 000 near the nematic-smectic transition. In Fig. 
2 we see some evolution diagrams that illustrate the need for 
these long runs. While the simulation equilibrates fairly 
quickly far from a phase change, e.g. here at T* = 2.00, 
T* = 2.80, we see a very persistent fluctuation near the tran- 
sition ( T *  = 3.55 and T *  = 3.60), that could produce quite 
misleading results if the production run was truncated after 
some thousand or tens of thousand cycles. The long fluctua- 
tion seemingly corresponds to the configurational bottleneck 
between isotropic and nematic phase and the fact that at a 
first-order transition both phases have, in principle, the same 
probability of occurrence. We notice that this phenomenon, 
well known in lattice-model studies3 is not always considered 
when dealing with models with translational freedom. 

A summary of the results of the simulations for the 
N = 512 and N = 1000 systems are given in Tables 2 and 3. 
The reported errors were calculated as described in ref. 3. We 
shall now consider in detail the information obtained for the 
thermodynamics and the structure of the systems. 

2.1 Thermodynamics 

The variation of scaled internal energy (U*) - ( U > / E ~  
referred to one particle for the systems of N = 512 and 
N = 1000 particles with temperature is shown in Fig. 3. We 
see that the energy curve presents more than one change of 
slope. The highest temperature change of slope occurs 
around T* = 3.55. We shall demonstrate later that this 
change of slope can be identified with the nematic-isotropic 
(NI) transition of the system. For the N = 1000 system we 
report results for a cooling sequence, with simulations started 
from an isotropic system and cooling down (V) or vice versa 
continued from a set of simulations started on the cold side 
(A). As we can see hardly any hysteresis is apparent. This 

Fig. 2 Evolution charts of the scaled energy U* with production 
cycles at scaled temperatures T* = (a) 2.Wh, (b) 2.80h, (c) 3.55' and (d)  
3 .ac  for the N = 1000 system. We also show the evolution of the 
cumulative average ( U * )  (continuous line). Notice the different 
scales for the various scaled temperatures. 

Table 2 Average scaled energy ( U * )  and order parameter (P,) 
obtained from the production runs of the N = 512 simulations 

1.90 5 - 12.205 + 0.014 0.952 + 0.001 
2.00 16 - 11.851 k 0.021 0.947 + 0.001 
2.20 20 - 10.124 i 0.025 0.922 + 0.001 
2.40 20 - 8.342 + 0.035 0.870 + 0.004 
2.60 10 - 7.665 + 0.035 0.844 + 0.001 
2.80 10 -7.147 + 0.043 0.821 + 0.004 
3.00 10 - 6.596 + 0.034 0.788 f 0.003 
3.20 20 - 5.986 + 0.042 0.757 + 0.005 
3.40 70 -4.914 f 0.042 0.645 + 0.006 
3.50 90 -4.803 + 0.032 0.640 + 0.005 
3.55 20 -2.644 + 0.013 0.133 + 0.005 
3.60 10 - 2.473 f 0.032 0.065 f 0.004 
3.80 15 -2.282 + 0.019 0.083 + 0.008 
4.00 10 -2.055 + 0.028 0.068 + 0.006 
5.00 10 -0.843 f 0.020 0.091 + 0.005 

The column marked n,, refers to the number of equilibration cycles 
employed for each scaled temperature. The production runs consist- 
ed in all cases of n,,, = lo4 cycles. 

seems to be at variance with the observations of Chalam et 
al.14 where large differences were found on the heating and 
cooling cycles of their molecular dynamics simulation on 500 
GB particles with p = 2, v = 1 at a higher density, p* = 0.32. 
In any case the fact that here the two branches match very 
well outside the small transition region indicates that the 
system is satisfactorily equilibrated. 

The heat capacity of the system has been calculated as in 
ref. 3 by differentiating the energy with respect to tem- 
perature and is shown in Fig. 4 for the 512 and 1000 particles 
samples. 

We notice at once the sharp peak of the isotropic tran- 
sition and a lower, very broad one. The low-temperature 
hump seems to be the superposition of at least two peaks that 
could tentatively be associated with a crystal-smectic and 
smectic-nematic transition, while the possibility of a smectic- 
smectic phase change in between cannot be ruled out. The 
low temperature value of C $ ,  2.7, is not too far from the one 
expected from a collection of harmonic oscillators-librators. 

As far as the change with sample size is concerned, we can 
only really compare the high temperature NI anomaly. In 
this case the larger system presents a sharper and higher peak 
and an asymmetric shape, with a faster descent on the 'hot' 
side. This behaviour is consistent with a first-order transition. 
However, we should point out that the average values near 
the transition present extremely large fluctuations as the 

( U * )  -8 

-1 6 
1 2 3 4 5 

T* 

Fig. 3 Average scaled energy ( U * )  as a function of scaled tem- 
perature T*. We show results for the N = 1000 system in a cooling 
(V) and heating (A) stage and results for the N = 512 system (0). 
The vertical dashed line indicates the nematic-isotropic transition. 
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Table 3 Results for the N = 1000 simulations obtained from the n,,,, production runs (in kcycles) after n,, equilibration kcycles 

Runs marked and ' refer to heating and cooling runs respectively. 

system spends time in the isotropic and ordered phase, as we 
have seen in the evolution diagrams of Fig. 2. In Fig. 5 we see 
that this is quite apparent when comparing energy histo- 
grams at various temperatures around the NI transition. 

The histograms P(U*) represents the frequency of 
occurrence of a certain energy value during the simulation. 
We have considered all occurrences of the observable (the 
energy in Fig. 5) both for the cooling and heating sequences. 
Near the transition this means that up to lo6 cycles contrib- 
ute to the histograms. As we see, the peaks are extremely 

sharp and the deviation from gaussian shape quite small at 
low temperatures. On the other hand the histograms become 
extremely non-gaussian and start to show a two-overlapping- 
peak behaviour near the isotropic transition. Such a behav- 
iour has been observed3 for the Lebwohl-Lasher model 
where a much larger sample size allows examining the neigh- 
bourhood of the transition in finer detail. For instance, an 
estimate for the temperature of divergence of the pretransi- 
tional effects could be given in that case, while we have not 
attempted this here. In Fig. 6 we show the temperature varia- 
tion of k,  , k,  and k,, the second, third and fourth cumulants 

0 ~ ' ~ ~ ~ ' ~ ~ ~ ' " ~ ~ ' ' ' ' ' ' ~  
1 2 3 4 5 Fig. 5 Histograms P(U*) of the scaled energy values U* occurring 

r during the simulation runs for the N = 1000 system at various scaled 
temperatures T* around the nematic-isotropic transition. All histo- 

Fig. 4 The dimensionless specific heat Ct plotted against scaled grams have been normalized to the same unit area and comprise 
temperature T* for the N = 1000 (+) and N = 512 (0) systems both the cooling and heating sequences. 
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Fig. 6 Plot of the second (a), third (b) and fourth (c) cumulants of 
P(U*) us. T* around the nematic-isotropic transition 

of P(U*). We recall that k, = m,, k, = m, and k, = m, 
- 3m:, where the nth central moment of U*, m;, is 

m; = 1 (U: - <U*))"Pk(U*) (8) 
k 

and P, is the population of the histogram at bucket k, nor- 
malized so that m: = 1. We notice that the width of the 
peaks, given by k,, is very small except near the transition, 
where an increase of an order of magnitude is apparent. The 
gaussian character of the peaks outside the transition region 
is confirmed by the very small fourth cumulant (expected to 
be zero for a true gaussian). Notice that the skewness, as sig- 
nalled by k , ,  is always small, and that it changes sign 
between T* = 3.55 and T* = 3.60. The rather large fluctua- 

) tions in k, depend probably on the still limited sample size. 
We can estimate the transition temperature from the 

change of sign of k, and obtain T:, x 3.57. The energy histo- 
grams also allow estimation of the entropy of transition from 
the relation AS:, = AUgJT;,. We find, even though in a 
rather approximate way, AS:, x 0.2 + 0.1. 

2.2 Structure of the Phases 

Having located the temperatures where the heat capacity pre- 
sents anomalies it is now worth looking more closely at the 
molecular organization in the different regions. We start by 
looking at configuration snapshots at six temperatures (see 
Plate 1). The molecules are represented with ellipsoids and 
their orientation is given by a colour code as we have pre- 
viously done for lattice models3' (see palette in Plate 1). Here 

we find the director of each configuration and we rotate the 
sample so as to bring the director along the laboratory z axis. 
The sample is then viewed from an observation point placed 
at polar angles 8 = 27.5" and q5 = 25". The perspective ren- 
dering, illumination and shading is done on a HP720 using 
the Phong and the configurations are further 
assembled as shown in Plates 1 and 2 using the San Diego 
Supercomputer Centre 'Image Tools'.32c TO facilitate obser- 
vation the particles are shrunk by a scaling factor of 0.8. 

On examining the configurations the change in organiz- 
ation is quite apparent. For the temperatures in the region of 
the first Ct peak (here T* = 1.8 and T* = 2.0) the system has 
a well ordered near crystalline or smectic structure, with the 
molecular axis perpendicular on average to the layers, thus 
with smectic A or B character. The layered structure is lost in 
the T* = 2.80 and T* = 3.50 snapshots, where the structure 
clearly appears to be nematic. The orientational disorder, 
here signalled by an increase in the number of the differently 
coloured molecules (which in turn compete to orientations 
with significant misalignment from the director) increases 
with temperature as expected. At T* = 3.8 the system has 
become isotropic and all orientations, here all colours of the 
palette, are present. It is interesting to see that even above 
T;, we have groups of neighbouring molecules of the same 
colour and thus with similar orientations. This provides an 
immediate visualization of the existing short-range order or 
local domains. Some pretransitional order remains even at 
the highest temperature shown, T* = 4.0, ca. 10% above the 
transition. 

In Plate 2 we show snapshots of the same configurations at 
the six different temperatures from a viewpoint perpendicular 
to the director. In this transversal view six layers are clearly 
visible at T* = 1.80 and 2.00. It should be remembered that a 
shrinking factor of 0.8 is applied to the particles to facilitate 
viewing of the layers that are actually somewhat interdigi- 
tated, without the slight interlayer space apparent in the 
figure. 

It is clear that this pictorial representation, although useful, 
has to be complemented by more quantitative numerical 
observables. Here we have calculated a variety of them. First 
we examine the distribution of intermolecular vectors. This 
can be introduced starting from the general two particle dis- 
tribution P(2)(r,, a , ,  r,, 0,) giving the probability of finding 
any two particles at (r,, w,, r,, w,). This pair distribution will 
reduce for large intermolecular separations to the product of 
the singlet distributions for the two molecules: P(r,, a,), 
P(r,, u , ) . ~ ~  At short and intermediate distances the position- 
orientation of the two molecules are interdependent. A pair 
correlation function is defined3, as 

so that g(')(r,, w,, r,, w,) goes to one in the limit of large 
intermolecular separations. Then a distribution of the inter- 
molecular vector around a molecule taken as origin is intro- 
duced by integration over the orientations of the two 
particles and the position of the first particle: 

J dr, dw, do, 

This quantity gives the probability of finding a particle at a 
certain distance r from a particle chosen as origin when their 
intermolecular vector has orientation W, = (a,, R). Notice 
that the systems considered here are at most uniaxial, so if we 
consider orientations defined with respect to a laboratory 
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system with z axis parallel to the director we do not need to 
consider the angle ur and the intermolecular vector distribu- 
tion reduces to g(r) = g(r, pr)/2x. The significance of this dis- 
tribution will become clearer if we look at Fig. 7 where we 
show results for this quantity, reported as g(r*, cos /Ir), at the 
six different temperatures considered in Plates 1 and 2. 

The three-dimensional representation shows at once that 
the radial distribution is far from isotropic even in the 
nematic phase, an assumption often, even though not always, 
made by simple mean field In addition the func- 
tion changes quite significantly with temperature. The very 
low temperature one (T* = 1.8) shows that as we move from 
a molecule along the z laboratory axis (cos B, = 1) a second 
molecule is found slightly below a,. However if we move 
transversally to the director (cos B, = 0) very sharp, well 
defined peaks appear. At least six orders of peaks occur, indi- 
cating a high degree of structure in the layer. A more careful 
look at the double structure of the second peak betrays this 
structure for an hexagonal ordering, as expected in a smectic 
B or crystalline layer structure. In particular, as in a triangu- 
lar lattice in the layer, we have first the sharp nearest- 
neighbours peak, then a double peak with similar intensities 
around r* = 2, another double peak with 2 : 1 intensity factor 
between r* = 2.6 and 3.0. These would appear at r* = 1.73 
and 2 and at 2.646 and 3 for the perfect triangular lattice. At 
T* = 2.0 the structure is quite similar, although less resolved. 
We still have order in the layer but the characteristic features 
of hexagonal ordering are not evident. We are not able to 
ascertain any sharp transition between these different low- 
temperature configurations. We recall that the specific heat 
curve in Fig. 4 was also not so helpful in this respect, showing 
essentially a broad hump. The ordering inside the layer 

15.0 (a) 1 

decreases significantly on increasing the temperature and dis- 
appears, except for a couple of shells, in the nematic. At 
T* = 2.8 the layer organization is lost, even if some short- 
range translational order remains. The further increase in 
temperature to T* = 3.5 only shows a further reduction in 
transversal order. As we move to the isotropic phase the 
structure is flat and essentially the same in all directions. 

The ordered structure of the p = 2, v = 1 model at 
p* = 0.30 bordering with the isotropic is not very well char- 
acterized in ref. 14 and was assigned to a nematic in ref. 16. . 
To examine the nature of the molecular organization trans- 
forming to the isotropic phase we have also calculated a few 
additional quantities. One is the pair correlation along the 
director, i.e. along the z direction. This gives the probability 
of finding a second molecule with a vertical displacement of z 
along the director from one taken as origin. 

S dr r2 dB, sin B,b(r cos p, - z)g(r, B,) 

g(z) = 

S 
(11) 

dr r2 dB, sin p,b(r cos /?, - z) 

This quantity is plotted in Fig. 8 in terms of scaled displace- 
ment z*, z* = z/o, for a set of temperatures around the low- 
and the high-temperature anomaly in the heat capacity. 
Notice that the function starts from a non-zero value, corre- 
sponding to the probability of finding other molecules with 
the same elevation as that at the origin, as is the case when a 
layered structure exists. We see clearly the change from the 
regular periodic pattern of the smectic to the flat distribution 
of the nematic structure around T* = 2.4. We also see, from 
the curve at T* = 3.5 that our p = 1, v = 3 system is defi- 

15.0 7 (b) 

Fig. 7 The intermolecular vector distribution g(r*, fi,) as a function of scaled separation r* and of the angle /3, between intermolecular vector 
and director for the N = 1000 system. The scaled temperatures correspond to those of the configurations in Plate 1. 
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Fig. 8 Pair correlation function along the director, g(z*), for the 
N = 1000 system at various scaled temperatures in the crystalline, 
smectic: T* = (a) 1.80h, (b) 2.00h, (c) 2.30h and nematic: T* = (d) 
2.40h, (e) 2.80h, (f) 3.50" phase 

nitely nematic rather than smectic before it becomes iso- 
tropic. 

It is convenient to expand g(r, 8,) as 

where go@) is the standard radial distribution 

The set of quantities g;(r) associated with the intermolecular 
vector correlation function represent a sort of order param- 
e t e r ~ . ' ~ . ~ '  

In practice g:(r) = 1 and g;(r) represents the first non- 
vanishing anisotropic term. In Fig. 9(a) and (b) we report a 
set of these parameters for some selected temperatures. 

The radial distribution go@*) shows once more, although 
in a different and perhaps more familiar way, the loss of long- 
range positional order as the temperature increases. From 
this point of view the smectic (and of course crystalline) 
phases differ from the nematic more than the nematic differs 
from the isotropic phase. Indeed if we compare go@*) for two 
temperatures relatively near to T;, on the ordered and disor- 
dered sides [namely T* = 3.5 and 3.65 in Fig. 9(a)] we see a 
great similarity, with only some quantitative difference. This 
is in agreement with a conjecture of Luckhurst and 
Z a n n ~ n i ~ ~  which made the hypothesis of a similar short- 
range structure on the two sides of the transition as a cause 
for the small entropy jump at the nematic-isotropic tran- 
sition. 

The second-rank angular anisotropy of the intermolecular 
vector distribution, gi(r*), plotted in Fig. 9(b) shows that the 

Fig. 9 The radial distribution function g,(r*) and its second-rank 
anisotropy gf(r*) at various scaled temperatures in the crystalline, 
smectic: T* = (a) 1.80h, (b) 2.00h, nematic: T* = (c) 2.80", (4 3.50" 
and isotropic: T* = (e) 3.65', (f) 3.80' phase 

nearest-neighbour vector is essentially perpendicular to the 
director both in the smectic and the nematic phases. In fact 
gl(r*) = (P,(cos /?,)), is negative (and thus on average p, > 
54.7" even at T* = 3.5). In the isotropic phase we still have 
short-range clusters of molecules, as we have seen from the 
snapshots and from go(r*). Moreover the clusters are essen- 
tially randomly oriented with respect to the instantaneous 
preferred orientation and thus the peak, although still nega- 
tive, is very small. We also see that in the nematic (and of 
course in the isotropic) phase the anisotropy of the intermo- 
lecular vector distribution goes to zero very quickly. Once 
more this seems to be in agreement with ref. 36 and shows 
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the importance of looking at the structural data produced by 
the simulations in a number of ways. 

2.3 Orientational Order Parameters 

Molecular orientational order parameters of second and 
fourth rank: (P,) and (P,), have been determined. In par- 
ticular we have calculated and diagonalized the laboratory 
frame tensor (AL), with elements3 

where (ui),, are the components of the unit vector ui giving the 
orientation of the axis of molecule i and ( . . . ), indicates an 
average over the sample configuration. In practice the calcu- 
lation is done every 20 cycles, to reduce the unavoidable 
correlation between nearby configurations in the Monte 
Carlo chain while avoiding a waste of computer time. 

The second-rank order parameter for the Jth configuration 
is obtained from the largest eigenvalue of the ordering matrix 
(OL)s = (AL)S - (1/3)1, i.e. A;,,,, and the average (P,) is pro- 
duced from the overall configurational average of these A;,, 
as (P,) = 3Am,J2. The errors quoted in Tables 2 and 3 are 
calculated as the corresponding standard deviations. We have 
also calculated for the first time for the GB model the fourth- 
rank order parameter (P,). This was done from the sample 
average of a fourth-rank tensor F, constructed as direct 
product of A, transformed to the director frame of the con- 
figuration as determined by the eigenvector matrix U of 
(o),.~ More explicitly the director d is obtained as the eigen- 
vector corresponding to A,,, and the fourth-rank order 
parameter (P,) can be obtained from the director frame 
tensor element 

with (F:~,~), = <ua ub u, ud), and cos B = u . d 

The average fourth-rank order parameters reported in Table 
3 are then obtained as configurational averages. 

In Fig. 10 we show (P,) and (P,) as a function of tem- 
perature for the heating and cooling stages of the N = 1000 

Fig. 10 Orientational order parameters as a function of scaled tem- 
perature, (a)-( f )  as Fig. 9. We show results for (P,), (P,) of the 
N = 1000 system in a cooling (V, 0) and heating (A, 0) sequences 
as well as results for N = 512 (0). The vertical dashed line indicates 
the nematic-isotropic transition. 

system and for the N = 512 system (filled circles). We see an 
essentially continuous behaviour for these parameters even at 
the smectic-nematic transformation with a very sharp 
decrease at the nematic-isotropic transition. The average 
value of (P,) at the transition is quite large, being above 0.4. 

Remembering the large fluctuations at the transition 
observed earlier for the energy, it is important to examine, 
also for the order parameters, the distribution of values 
obtained from the simulations. In Fig. 11 we show histo- 
grams of (P,) around the nematic-isotropic transition for 
the N = 1000 system. We see that (P,) has a very broad 
distribution at T* = 3.55 and that the largest value of (P,) 
to which a significant peak competes is about 0.45, that we 
take as our estimate of (P,),, . 

Such a large change in (P,) is rather unusual for com- 
puter simulations and seems higher than that found for the 
other Gay-Berne system studied so far.'" Part of the problem 
may simply reside in the sharp decrease of (P,) coupled with 
an uncertain location of the nematic-isotropic transition. 

Turning to the fourth-rank order parameter, also reported 
in Fig. 10, we see that it is always positive and that it 
decreases with temperature as expected. The temperature 
variation, although broadly similar, does not have the same 
curvature as that of (P,) and the jump at the transition is 
very small. We estimate from the histograms of (P,) (not 
shown) (P,),, x 0.12. 

The (P,) us. (P,) curve is universal as long as the singlet 
distribution has an exponent or potential of mean torque 
with second Legendre polynomial chara~ter .~  This curve is 
represented as the continuous line in Fig. 12. The heating and 
cooling results shown in Fig. 12 are slightly but significantly 
above this curve. By comparison the (P,) us. (P,) results for 
the Lebwohl-Lasher model lay below the same universal 
curve.3 

Fig. 11 Histograms P(<P,)) of the frequency of occurrence of (P,) 
values occurring during the simulation runs for the N = 1000 system 
at various scaled temperatures around the nematic-isotropic tran- 
sition. All histograms are normalized to the same unit area and are 
cumulated for both the cooling and heating sequences. 

Fig. 12 (P,) us. (P,) for N = 1000 system in the heating (a) and 
cooling (V) runs compared with the Maier-Saupe prediction 
(continuous line) 
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We now wish to turn to a comparison of our results with 
those for other GB models. In particular an important ques- 
tion we should ask is: Given a certain molecular shape and 
shape anisotropy, what is the role of the strength of inter- 
action parameters, in particular of the exponents p and v ?  
Until recently, very little consideration has been given to the 
adjustable part of the potential. Even in the very extensive 
study of the GB potential by de Miguel et a1.14*15 there was 
no attempt to utilize values of p and v different to those 
determined by Gay and Berne. In a slightly different formula- 
tion of the GB potential due to Gupta et aLJ7 the p and v 
parameters have been fixed to one and the potential has been 
tuned otherwise. Thus is interesting to compare our results 
with those available for the p = 2, v = 1 case. We notice at 
first some qualitative differences. At a density of p* = 0.30 
the work of de Miguel et al.14 with the original GB potential 
hints at the possibility of an isotropic-smectic B transition, 
while we have confidently demonstrated the existence of a 
relatively wide-range nematic phase. A nematic was found 
also in ref. 16. Moreover, Fig. 4 and 12 show a strong tran- 
sition while other Gay-Berne simulation studies predict 
weaker NI transitions. In particular Emsley et a1.16 have 
studied the p = 2, v = 1 model at p* = 0.3, 0.32, 0.35. They 
have found very large temperature shifts for this relatively 
large density variation. For instance the nematic-isotropic 
transition was found16 to go from 0.94 to 1.51 and 3.29 for 
the three densities. In all the systems the transition was, 
however, found to be rather continuous and the second-rank 
order parameter well approximated by the expression: 

where (P,), is the residual order parameter in the isotropic 
phase that is different from zero in a finite system and was 
taken to be 0.1 in the N = 256 system used in ref. 16. For 
p* = 0.30 the exponent B was found to be 0.37 and this curve 
is plotted in Fig. 13 as the dashed line. A similar fit on our 
data, using (P,), = 0.1 and T k  = 3.57 gave B = 0.17 i.e. 
roughly half of that in ref. 16. An expression essentially ana- 
logous to eqn. (18) was used by Leenhouts et al." to fit their 
experimental results for the diamagnetic susceptivity aniso- 
tropy in a series of 12 Schifs base nematics which include the 
popular mesogens n-(4-methoxybenzy1idene)-4'-n-butylaniline 
(MBBA), with B = 0.174, and anisylidene-p-amino- 
phenylacetate (APAPA), with 8 = 0.185. In that case an 
exponent 6 = 0.17-0.21 was found to fit all their compounds. 

Fig. 13 Orientational order parameters as a function of reduced 
temperature T*/T$,. We show results for (P,), (P,) of the 
N = 1000 system in a cooling (V, 0) and heating (A, 0) sequence, 
together with Maier-Saupe curves (continuous and dotted lines for 
( P , )  and (P,)). We also show (P,) as obtained for the p = 2, v = 1 
modelr6 (dashed line). The vertical dashed line indicates the nematic- 
isotropic transition. 

A similar fitting of birefringence data for 4-n-pentyl-4'-cyano- 
biphenyl (5CB) by Wu and Cox gave an exponent j? = 0.172 
with again values in the range B = 0.17-0.22 for other com- 
p o u n d ~ . ~ ~  It is comforting to see that the present choice of 
model parameters seems to give one of the fundamental 
properties for liquid crystals: the temperature variation of the 
order parameter, in agreement with the behaviour of many 
real systems. 

In Fig. 13 we also show (P,) and (P,) us. reduced tem- 
perature T*/Tg, for the heating and cooling sequences and 
the Maier-Saupe theory predictions for (P,) (continuous 
line) and (P,) (dotted line). 

In summary it seems then that changing p from 2 to 1 and 
v from 1 to 3, while not altering the shape and well-depth 
anisotropies, has a rather dramatic effect on the stability of 
the nematic phase. The reason for this may be traced back 
from the potential plot in Fig. 1. Although the relative well 
depths for the end-to-end and side-by-side configurations are 
unaffected we see that the perpendicular 'T' arrangement is 
destabilized with respect to the former two. Since this con- 
figuration arises easily in the isotropic phase, but is not likely 
to be favoured in the nematic phase we might expect a 
greater propensity for mesophase formation. 

3. Conclusions 
We have performed a detailed study of the temperature 
dependence and of the nematic-isotropic phase transition in 
two Gay-Berne model systems composed of 512 and of 1000 
particles. We have looked at the character of the nematic- 
isotropic transition and we have found it necessary to 
perform very lengthy runs to be able to study this. We have 
found a relatively strong transition, as compared with the 
published results for the standard (p = 2, v = 1) potential. We 
have found that (P,) is larger than that expected for a 
simple Maier-Saupe model and that (P,) is also slightly 
higher than that predicted for a pure P, effective potential. 
We have found practically no hysteresis and that the results 
for heating and cooling runs are essentially superimposable. 

A comparison of our results for the p = 1, v = 3 model 
with those for the standard potential shows that the proper- 
ties of these two GB fluids with the same size and shape 
factors but with different attractive interaction parameters 
can vary significantly. The temperature dependence of the 
order parameter for the present model is characterized by an 
exponent B = 0.17 very similar to that obtained 
e ~ p e r i m e n t a l l y ~ ~ . ~ ~  for a wide range of compounds. Our 
results confirm the great potential of the GB potential for 
modelling liquid crystal behaviour and the usefulness of 
exploring the effects of changing the parameters in the model. 
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