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On a simple model of ferroelectricity in liquid crystals
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A simple model with first and second rank anisotropic interactions that can be viewed as a prototype of bowlic and
ferroelectric liquid crystals was studied. This Krieger-James model can have a polar, nematic and isotropic phase. This was
investigated by applying two-site cluster theory and Monte Carlo simulations and results are presented for its thermodynamics
as well as for its macroscopic polarization as a function of temperature.

1. Introduction

Ferroelectric low molar mass [1] and polymeric
liquid crystals [2] have become extremely interest-
ing both for their fundamental properties and for
their applicability in fast-switching electro-optic
devices [3]. The only liquid crystals that have been
prepared and studied to date are, to our knowl-
edge, chiral smectic C phases. However, there are
no reasons of principle to exclude other kinds of
liquid crystal ferroelectric phases and it is interest-
ing to develop simple molecular models that ex-
plore the key ingredients that could give a ferro-
electric liquid crystal.

One such model is that first proposed by
Krieger and James [4] and later examined also by
Lin Lei [5]. We treat a lattice version of the model
that consists of a set of particles placed on a
simple cubic lattice and interacting with the P, P,
pair potential

U, = —¢;,| Py(cos B;) + £Py(cos Bl (1)

where ¢,; is a positive constant, €, for nearest-
neighbour particles, i and j, B;; is the angle
between the axis of these two molecules and P, is
the Lth Legendre polynomial. The parameter, £,

determines the relative importance of the first
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rank term with respect to the second one, while its
sign determines ferroelectric or antiferroelectric
type ordering. Realization of a molecular system
with ferroelectric type ordering could be made
possible by a combination of steric and dipolar
interactions as, for example, in pyramidic systems
[6-7].

2. Two-site cluster (TSC) theory

We have employed the classical procedure of
Strieb et al. [8] to treat in detail two particles in
the field of all the others. The cluster variational
parameters have been obtained by direct numeri-
cal minimization of the free energy, rather than by
solving the system of consistency equations as it is
more often done. We have determined the phase
transition temperatures for a set of £ values as
well as the first and second rank order parameters,
(P,), {P,), as a function of temperature. The
results are shown below, together with the com-
puter simulation findings.

3. Cluster Monte Carlo (CMC) simulations

Determining transition temperatures and tran-
sition behaviour is a challenging exercise in com-
puter simulations [9-11]. Investigating the char-
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acter of a transition requires a finite size scaling
study but even simply obtaining a good estimate
of the transition can be rather difficult and com-
plicated by the choice of boundary conditions.
The standard method is to use periodic boundary
conditions and consists of having exact replicas of
the system filling space as needed by the range of
the pair interactions. Although vastly superior to,
for example, an empty space boundary, using peri-
odic boundary conditions leads to large smearing
and broadening of the heat capacity versus tem-
perature peak at a supposed transition. This in
turn makes it difficult to obtain a sensible esti-
mate of the transition unless a very high number
of particles (typically many thousand) is used [10].
Clearly, such large numbers can be forbidding,
even with a simple potential such as that in eq. (1),
if the simulation has to be repeated for various
values of a physical parameter, here the first to
second rank ratio, £&. Thus we have simulated the
P, P, system employing the cluster Monte Carlo
method. In this technique, described in detail in
ref. [11], periodic boundary conditions are re-
placed by the weaker condition that the particles
outside the sample box have, on the mean, the
same observable properties as those inside, rather
than being their exact replicas. The desired bulk
average of a quantity A is written as an average
over the various external configurations, [W], of
the average values, (A4}, calculated for a fixed
configuration of the ‘world’ outside the sample
box. In practice, a finite set My, of external world
configuration samplings is used and one replaces a
single Monte Carlo average by an average of
Monte Carlo results, each obtained for a fixed
environment [W]. The external boundary layer
orientations are sampled from a distribution

3
P(cos B) = exp| > a Py (cos B)], (2)
L=0

where the coefficients a, are determined from the
consistency constraint that the available (P, ) can
be re-obtained by averaging P,(cos ) over the
distribution in eq. (2) and that the distribution is
normalized. In this preliminary study, we have
investigated three systems of particles interacting
with the P, P, potential of eq. (1), on a simple
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Fig. 1. The reduced energy per particle, U *, against dimen-
sionless temperature 7* as obtained from 8x8x8 CMC
computer simulations for £ = 0.2 (W), 0.4 (a), 2.0 (®) compared
with the two-site cluster (TSC) results (continuous lines).

cubic lattice with dimensions 8 X 8 X 8 for differ-
ent values of the parameter &, i.e.,, £=0.2, £=0.4,
£ =2.0. The simulations have been run in a heat-
ing sequence, with the first configuration being
completely ordered. In fig. 1, we show the reduced
energy, U* = U/Ne, for the three ¢ plotted as a
function of the dimensionless temperature, 7 * =
kT/e. We find, by analyzing the temperature de-
rivative of the energy, that when £= 0.2 the sys-
tem presents a transition from polar to nematic at
T*=0.84 4+ 0.03 followed by a nematic to iso-
tropic transition at 7* =1.16 + 0.01 (see fig. 1).
The corresponding TSC results are, respectively,
T* =0.8562 and 1.1727. When ¢ = 0.4, we find a
sharp, first order, transition from polar to iso-
tropic at T* = 1.225 4+ 0.005 in good accord with
the TSC prediction of 7* = 1.238. When the first
rank contribution is further increased, £ = 2.0, we
have again a single transition from polar to iso-
tropic, but now this is a much smoother one, at
T* =3.45 £ 0.02, while TSC gives T * = 3.625.

Our results are in qualitative agreement with
the mean field results in refs. [4,5]. Of course, the
TSC results improve on those, as confirmed by the
computer simulations.

In fig. 2, we show the temperature dependence
of the macroscopic polarization (P, ) for the three
values of £. This has been calculated from the unit
vectors u; specifying the particle orientation by
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Fig. 2. The first-rank order parameter, (P;), versus reduced

temperature, T *, obtained from 8 X 8 X8 CMC for £ =0.2 (m),
0.4 (a), 2.0 (®) and TSC theory (continuous lines).

first calculating the director d” in the J configura-
tion from the eigenvector of the ordering matrix
corresponding to the largest eigenvalue, which in
turn yields the second rank order parameter (P, ),
[10,11]. The average over M configurations then
gives

1 M N

<P1>>\=MNZ|E"i’dJ| (3)
J o

We see from fig. 2 that the temperature depen-

dence of the spontaneous polarization is quite
different for the three cases studied. At £=0.2,

<P,>,
0.8

0.6 f hl
0.4

0.2

1 1 1

I ! | 1
0. 0.2 0.4

<Py>,

Fig. 3. The second rank order parameter, { P,), versus the first
rank order parameter, { P;), obtained from 8 X 8x 8 CMC for
£=0.2 (W), 0.4 (a), 2.0 (®) and TSC theory (continuous lines).
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{P;) goes to zero at the first change in slope of U,
showing that in the temperature interval between
the two transitions the phase is of nematic type.
For the other two cases, the polarization only
vanishes when going to the isotropic limit. Apart
from (P;) we have determined order parameters
up to rank four and these will be reported
elsewhere. Here we just show in fig. 3 the second
rank versus first rank order parameter together
with the TSC prediction. The calculation of both
first and second rank order parameter is essential
in predicting the molecular contribution to dielec-
tric relaxation in such a phase [12].

4. Conclusions

We have shown that a simple combination of a
first rank interaction simulating the head-tail
asymmetry and of a second rank interaction is
sufficient to obtain a ferroelectric liquid crystal as
well as a nematic phase and we have calculated
the temperature dependence of the order parame-
ters involved. We believe this simple model [4,5]
contains the essential features needed to explain
the polar transition and the temperature depen-
dence of the order parameters in its neighbour-
hood. Moreover, since a liquid crystal can be
expected to exist only in a limited temperature
range from an orientational phase transition, we
think that this model, like the Lebwohl-Lasher
model for nematics [10,11], can be taken as a
prototype of the behaviour to be expected in real,
even though as yet undiscovered uniaxial ferro-
electric systems.
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cial support through Progetto Polimeri Liquido
Cristallini. MPI and CNR are also thanked for
supporting other parts of this work.
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