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Phase Diagram and Orientational Order in a Biaxial Lattice Model: A Monte Carlo Study
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We have determined the phase diagram for a lattice system of biaxial particles interacting with a
second rank anisotropic potential using Monte Carlo simulations for a number of values of the molecular
biaxiality. We find increasing differences from mean field theory as the biaxiality increases. We have
also calculated for the first time the full set of second rank biaxial and uniaxial order parameters and
their temperature dependence, and on this basis we comment on the difficulties of measuring phase
biaxiality by NMR.

PACS numbers: 61.30.Gd, 61.30.Cz, 64.70.Md
s,

r

r

-

or

the
e
d
-
e
ps

.

ed
Liquid crystal phases formed by biaxial particles hav
been studied using a number of theoretical methods; e
without trying to be exhaustive, mean field theory (MFT
[1–4], counting methods [5], Landau–de Gennes theo
[6,7], bifurcation analysis [8], density functional theory
[9], etc. All the theories mentioned above predict that th
system will exhibit four phases as the molecular biaxia
ity varies: a positive (N1) and a negative (N2) uniaxial
phase, respectively, formed by prolate or oblate particle
a biaxial (NB), and an isotropic (I) phase. The nematic-
isotropic phase transition is expected to be first order a
to weaken as the biaxiality increases until it becomes co
tinuous at the point (Landau bicritical point) of maximum
molecular biaxiality. At this point the system should g
directly from a biaxial to an isotropic phase. The biaxia
uniaxial transition is expected to be second order. T
possibility of a biaxial-nematic mesophase has been co
firmed by some computer simulations of a lattice syste
of biaxial particles [10,11], and of a fluid system of biax
ial spherocylinders [12]. On the experimental side, the
is an increasing number of biaxial lyotropic [13] and poly
meric [14] phases while the observation of thermotropi
claimed by a number of authors [15], typically on the ba
sis of optical observations, is still questioned [16].

Given this extensive activity, it is surprising that a de
tailed computer experimental study of the phase diagra
and, even more, of the full set of order parameters a
their detailed temperature dependence within the biax
and uniaxial phases are not available as yet. This inform
tion is crucial for the study of static but also, indirectly, o
dynamic properties [17] and in general to validate molec
lar theories. In this Letter we make an attack on this pro
lem and we propose a general prescription for calculati
order parameters from simulations in systems with sym
metry lower than uniaxial. We base our calculations o
the simplest second rank attractive pair potential [3,10],

Usvijd ­ 2eijhP2scosbijd 1 2lfR2
02svijd 1 R2

20svijdg
1 4l2R2

22svijdj , (1)

with the biaxial molecules, or “spins,” fixed at the sites o
a three-dimensional cubic lattice. The coupling parame
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eij is taken to be a positive constante when particlesi
andj are nearest neighbors and zero otherwise.vij is the
relative orientation of the molecular pair, given by three
Euler anglesa, b, andg [18]. P2 is a second Legendre
polynomial andRL

mn are combinations of Wigner functions
DL

mn [18] symmetry-adapted for theD2h group of the two
particles. Their explicit expressions, for the even term
are

RL
mn ;

1
2

ResDL
mn 1 DL

m2nd . (2)

The biaxiality parameterl accounts for the deviation from
cylindrical molecular symmetry: whenl is zero, the po-
tential Eq. (1) reduces to the well-known Lebwohl-Lashe
P2 potential [19], while forl different from zero the par-
ticles tend to align not only their major axis, but also thei
faces. The valuel ­ 1y

p
6 marks the boundary between

a system of prolatesl , 1y
p

6 d and oblate molecules
sl . 1y

p
6 d and is analogous to theself-dual case de-

scribed by Straley [2]. Thermodynamic results for a pro
late particle at biaxialityl andTp ; kTye can be mapped
onto sl0, Tp0d ­ sssfs3 2 l

p
6 dys

p
6 1 6ldg, 24Tpys6l 1p

6 d2ddd for the dual oblate particle.
We have performed Monte Carlo (MC) simulations

[19] for 16 values of the biaxiality parameterl, both on
an 8 3 8 3 8 and a10 3 10 3 10 lattice. For eachl
value, about 40 temperatures have been investigated. F
l ­ 0.3 additional larger size simulations (40 3 40 3

40) have been performed at selected temperatures near
biaxial-nematic and nematic-isotropic transitions to rul
out system size artifacts. The Metropolis MC metho
with periodic boundary conditions and controlled angu
lar displacement [19,20] has been employed for lattic
updates. We have typically used 30 000 lattice swee
(cycles) for equilibration and 20 000 for production. The
40 3 40 3 40 system has required 40 and 30 kcycles
In Fig. 1 we show the heat capacityCV obtained by dif-
ferentiating the energy against temperature as describ
in [20] and plotted against temperature forl ­ 0.2, 0.3,
and 0.408 25. Starting with the lower values ofl, we
see thatCV exhibits a small peak at low temperature
© 1995 The American Physical Society 1803
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FIG. 1. Heat capacityCp
V ­ CV yk vs reduced tempera-

ture Tp ; kTye for biaxiality l ­ 0.2 (a), 0.3 (b), and
0.408 25 (c). 10 3 10 3 10 MC results are shown as symbols
and MFT as continuous, dashed, and dotted lines, respective

and a sharper one at higher temperature corresponding
biaxial-uniaxial and uniaxial-isotropic phase transition
respectively. The first transition shifts at higher temper
ture asl increases, until the two peaks coalesce into a s
gle broad hump near the self-dual case [Fig. 1(c)]. Th
MC phase diagram shown in Fig. 2 has been obtain
from the peaks in the heat capacity. We see good agr
ment with the single result atl ­ 0.2 of Ref. [10] that
was obtained with 512 particles and a fcc lattice, aft
scaling to 6 nearest neighbors.

The comparison between MC and MFT results obtaine
here following the procedure in Refs. [3,21] shows

FIG. 2. Phase diagram showing the reduced transition te
peratureT p vs l. MC results are shown as filled square
(10 3 10 3 10) and circles (8 3 8 3 8). Empty squares are
(10 3 10 3 10) points mapped from (l, T p) onto (l0, T p0) (see
text). MFT results are shown as continuous lines. The tria
gles atl ­ 0.2 are from Ref. [10].
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rough qualitative agreement between the two method
However, MFT predicts a rather pronounced increase w
l, while the simulations suggest an essentially consta
transition temperatureTN1I . Above the tricritical point,
the transition temperature betweenN2 and the isotropic
phase increases monotonically. We have used the
points, where the variation in transition temperature
much greater than the error to generate the dual poi
below l ­ 1y

p
6, marked ass1d in Fig. 2. We see

that they confirm the small variation inTN1I . The MFT
predictions worsen from a discrepancy of 17% to abo
30% as the biaxiality increases and the transition becom
more second order.

We now turn to the determination of the order param
ters and their temperature variation. In the principal ax
system of a uniformly aligned biaxial phase the com
plete set of rank 2 order parameters consists of the av
ageskP2l, k R2

02 l, nonvanishing also in the uniaxial phase
and k R2

20 l, k R2
22 l, different from zero only in the biaxial

phase. In the isotropic phase, all the order parameters
zero. In the absence of external fields, the location of t
principal system is unknown and can fluctuate during th
simulation and thus has to be determined using rotation
invariants for each configuration. For uniaxial system
this determination is usually realized by diagonalizatio
of a suitable ordering matrix whose largest eigenvalue
the instantaneous order parameter and then averaging
sults for the various configurations. The calculation o
biaxial order parameters is more complicated because
the need of a suitable prescription for assigning the tw
lower eigenvalues in a way that does not unduly enhan
or cancel the phase biaxiality. We have attacked the pro
lem using an approach similar to that of an actual expe
ment. We start by considering the general expression
the eigenvalues of a tensor propertyA of a biaxial mole-
cule, in the (principal) frame of a biaxial phase in term
of order parameters [22]:

aXX ­ 2
1

p
3

A0,0 2
1

p
6

skP2lA2,0
MOL 1 2kR2

02lA2,2
MOLd

1 skR2
20lA2,0

MOL 1 2kR2
22lA2,2

MOLd , (3)

aYY ­ 2
1

p
3

A0,0 2
1

p
6

skP2lA2,0
MOL 1 2kR2

02lA2,2
MOLd

2 skR2
20lA2,0

MOL 1 2kR2
22lA2,2

MOLd , (4)

aZZ ­ 2
1

p
3

A0,0 1

s
2
3

skP2lA2,0
MOL 1 2kR2

02lA2,2
MOLd ,

(5)

where we use lowercase to indicate the eigenvalu
and A

L,m
MOL are irreducible spherical components o

AMOL of rank L. The order parameters arekP2l ­
kR2

0,0l ­
3
2 kcos2bl 2

1
2 , kR2

02l ­
p

3y8 ksin2b cos2gl,
kR2

20l ­
p

3y8 ksin2b cos2al, and k R2
22 l ­ k 1

4 scos2b 1

1d cos2a cos2g 2
1
2 cosb sin2a sin2gl.
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Experimentally one would try to select a sufficien
number of molecular propertiesAMOL

ij and measure their
average valueskALAB

ij l. Then, through a diagonalization
of these average tensorskALABl one could determine
the order parameters. The requirement that these or
parameters are the same for different observables help
assigning the correct principal laboratory frame. As a
illustration the explicit expressions for the eigenvalues
a tensorFab ­ dazdbz are

fXX ­
1
3

2
1
3

kP2l 1

s
2
3

kR2
20l , (6)

fYY ­
1
3

2
1
3

kP2l 2

s
2
3

kR2
20l , (7)

fZZ ­
1
3

1
2
3

kP2l . (8)

The nontrivial problem is finding a consistent way o
assigning the three eigenvaluesf1, f2, f3 of the matrixF
to the X, Y , Z axes. In the uniaxial phase or any wa
when kR2

20l . 0, and takingkP2l . 0, we havefZZ .

fXX . fYY and lettingfZZ ­ maxs f1, f2, f3d is sufficient
to assign the axes except for an irrelevant exchan
of X and Y . However, in the biaxial phase it may
well happen thatfXX . fZZ , e.g., whenkP2lykR2

20l ,p
2y3 , and, even if we assume thatkP2l and kR2

20l are
always positive, there is not a unique choice of axe
other than assigningY using fYY ­ mins f1, f2, f3d . In
particular, the basic assumption used to calculatekP2l
in the uniaxial case, i.e., maxs f1, f2, f3d ­ fZZ , breaks
down. Fortunately in simulations we can perform mor
virtual experiments, determining the average of oth
probe properties sensitive to the alignment of the tw
other molecular axes. In practice, equations containi
kR2

02l andkR2
22l as well askP2l, kR2

20l are constructed from
the average of two other matrices, sayGab ­ daxdbx and
Hab ­ daydby by means of Eqs. (3)–(5). The resulting
expressions of the order parameters in terms of t
average tensors read

kP2l ­ 3
2 fZZ 2

1
2 (9)

­ 1 2
3
2 sgZZ 1 hZZd , (10)

kR2
20l ­

s
3
8

s fXX 2 fYY d (11)

­

s
3
8

sgYY 2 gXX 1 hYY 2 hXX d , (12)

kR2
02l ­

s
3
8

sgZZ 2 hZZd (13)

­

s
3
8

shXX 1 hYY 2 gXX 2 gYY d , (14)

kR2
22l ­

1
2 sgXX 2 gYY 1 hYY 2 hXX d . (15)

The normalized eigenvectors of the matrices give the ax
of the reference system, except for the sign, so there
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3! ­ 6 different systems corresponding to the eigenvalu
permutations. We choose the eigenvalue permutati
that satisfies the following conditions: (a)kP2l . 0;
(b) the same order parameters must have the sa
values in all the ways they are computed (here, e.
kP2l and kR2

20l are computed in two different ways);
(c) for each configuration at one temperature the ord
parameters must be as close as possible to the m
value of the order parameters of the previous temperatu
(the sum of the differences is minimized). The abov
procedure effectively assigns theX and Y axes when
the phase is biaxial. In the uniaxial phaseX and Y
are undistinguishable and the method, even though n
needed, is not applicable because it forces a differen
that is completely spurious. In a similar way, applicatio
of the usual algorithm for findingkP2l to an isotropic
phase will give a spurious nonzero order paramet
(decreasing with size).

The curves forkP2l [Fig. 3(a)] exhibit the usual regular
decrease with temperature and show no indication of t
biaxial-uniaxial transition. While at low biaxiality the
nematic-isotropic transition is sharp (although it appea
continuous for these system sizes); the curve atl ­
0.408 25 shows a smooth decay consistent with th
expected second order character of the transition. O
the other hand, the molecular biaxiality parameterkR2

02l
[Fig. 3(b)] has a local maximum at the biaxial-uniaxia
phase transition, is nonzero also in the uniaxial pha
[2], and it increases with temperature until it reache
a maximum just below the nematic-isotropic transition
This behavior is qualitatively consistent with the MFT
predictions.

FIG. 3. Second rank order parameters vsTp: kP2l (a),
kR2

02l (b) obtained from 10 3 10 3 10 MC for l ­ 0.2
(circles), 0.3 (squares), and 0.408 25 (triangles) together w
MFT results (lines as in Fig. 1).
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FIG. 4. Biaxial second rank order parameters vsTp: kR2
22l (a),

kR2
20l (b). 10 3 10 3 10 MC results forl ­ 0.2 (circles), 0.3

(squares), and 0.408 25 (triangles). MFT results are shown
lines (cf. Fig. 1.)

In Fig. 4 the phase biaxiality parameterskR2
20l, kR2

22l
are shown. The order parameterkR2

22l [Fig. 4(a)] decays
monotonically from 1y2 to zero at the uniaxial phase
transition. Because of this large variation (an order
magnitude larger thankR2

20l) this order parameter provides
an effective monitor of the biaxial transition. The othe
parameterkR2

20l is rather small, increases to a maximum
value (,0.1), and then decays smoothly to zero at th
uniaxial phase transition.

It is worth noting that the quadrupolar asymmetry pa
rameter that determines the observation of biaxial e
fects in deuterium NMR experiments [22] is estimate
to be h ­

p
6 kD2

20lykP2l. For a uniaxial probeh ­
60.5 when l ­ 1y

p
6 but for the other valuesl ­

0.2, 0.3 is at the border of the threshold needed for NMR
detection [16] (h ø 0.2). It seems that an important
probe of phase biaxiality would instead be the measur
ment of kR2

22l, possibly by the use of suitable biaxial
rather than uniaxial probes.
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