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1. Introduction

Biaxial nematic (BN) liquid crystals have attracted considerable attention1 since

the early 1970s, when Freiser first predicted the existence of these phases2,3, partly

because the numerous unsuccessful attempts1 at synthesizing them posed doubt

on their very existence. The interest in these materials has recently been renewed

and has widely spread after experimental evidence of phase biaxiality in low mo-

lar mass nematic liquid crystals was put forward not only for lyotropics4 and

polymers5,6, but also for various low molar mass thermotropic systems. In particular

bent core oxadiazole based mesogens7,8 and tetrapodes have been extensively in-

vestigated using various techniques like NMR7 and infrared spectroscopy9,10. From

the theoretical point of view a considerable amount of effort has been deployed by

Virga and coworkers11,12,13,14 to successfully put the mean field level description

of these phases on a rigorous basis, starting from a rather general, even if purely

orientational pair potential due to Straley15, finding stability ranges for various

parameterizations11,12,13,14. Extensive simulation studies have also been performed
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on the same type of second rank biaxial potential with lattice models, i.e. assuming

particle positions to be confined to lattice sites, to investigate the biaxial phase

and its transitions both for the special case of dispersive interactions16,17,18,19,20

or for more general parameterizations21 going beyond the inevitable approxima-

tions of effective field treatments. Computer simulations at coarse grain, molecular

level, resolution with off lattice models, have also demonstrated the possibility of

forming BNs even in competition with the formation of smectic or crystal biaxial

phases22. Off lattice simulations are expected to be significative for unraveling the

structural features of biaxial mesogens at the molecular level and for helping in the

design and optimization of devices towards the technological deployment of biaxial

materials23. The experiments done for detecting phase biaxiality have been based

on various spectroscopic and optical techniques. Optical probing of topological de-

fects is of special interest, since the symmetry difference of biaxial and uniaxial

order might lead to significant differences in the properties of defects in BN and

uniaxial nematics24 and thus in the observed polarized microscopy images, that for

nematics correspond to the so called Schlieren textures24. Chandrasekhar et al.25,26

noticed that polarizing microscope textures of their candidate BNs contained only

defects of half integer and never of integer strength. Since the uniaxial nematic

phase shows defects of both types, the observation was suggested as a diagnostic

test for biaxiality25 and this suggestion was also recently reconsidered by Picken et

al.27. Similar observations were also made by us performing a simulation of defects

for a model Hamiltonian based on a special case of the general Straley hamiltonian:

that corresponding to London dispersion forces17. In that case it was seen that

initially four brush defects appeared which then evolved and disappeared by split-

ting into defects with only two brushes28. More recently we have done a simulation

of a BN film in a planar geometry29 with random anchoring conditions by using

a more general hamiltonian15,11 which considers various parameterizations of the

potential and accordingly gives a richer phase diagram21. In this case the defects

visible when the biaxial liquid crystal film was confined between two surfaces im-

posing planar degenerate anchoring were either of four or two brushes depending

on the biaxial parameters and not just two brushes as observed using the disper-

sion model28. It should be noticed that, topologically, integer defect lines are not

forbidden in BNs30, thus the appearance of defects should depend not only on the

symmetry of the nematic phase, but also on the relative values of elastic constants,

on the film thickness and mainly on surface anchoring. There is therefore a strong

need for a detailed analysis of the influence of different boundary conditions on the

appearance of the type of defects. For this reason, also stimulated by a recent ex-

perimental work31 on bent-core molecular systems where the substrates implement

homeotropic, rather than planar, alignment, we have performed a detailed simula-

tion study of a BN film with homeotropic surface anchoring using the generalized

Straley lattice Hamiltonian for a complete set of biaxial parameters. The aim of the

present study is to investigate the appearance and the type of topological defects

that can be produced.
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2. The model systems

The model we employ is based on the most general purely orientational pair poten-

tial between two rigid particles with biaxial D2h symmetry, that was originally put

forward by Straley15 and recently revisited, see e.g.11,12,13. For a cubic lattice with

nearest neighbor interactions, as assumed here, and in the notation introduced by

Romano19,20, as well as by Virga and coworkers13, the hamiltonian has the following

form:

Uij = ε{−G33 + Γ(G11 − G22) − Λ[2(G11 + G22) − G33]} (1)

where Gmn ≡ P2(u
i
m ·uj

n) and ui
m, with m = 1, 2, 3, are the orthogonal unit vectors

representing the axis system of particle i. ε denotes a positive constant setting the

temperature and the energy scales, T ∗ = kBT/ε, P2 is a Legendre polynomial. The

potential in Eq. 1, that depends on the two parameters Γ, Λ can be considered as

the second rank, L=2, contribution in a even more general expansion over Wigner

rotation matrices of rank L. To relate Γ and Λ to the length L, breadth B and

width W of brick-like molecules is a difficult task (see Ref.21); when Γ and Λ vanish

the model reduces to the well known Lebwohl-Lasher potential32 which correctly

reproduces the uniaxial nematic isotropic phase transition32,33.

As mentioned above we have studied a film where the alignment at the bottom

and top surface in the biaxial film is homeotropic. To implement that we have con-

sidered two additional layers at the top and at the bottom of the system where the

molecules have their long axes aligned homeotropically along z and are kept frozen

during the simulation. The strength of the anchoring at the surface is modelled

in the hamiltonian introducing a coupling parameter J scaling the interaction be-

tween one molecule belonging to the liquid crystal and the second one belonging to

the substrate. The boundary conditions at the four lateral faces of the simulation

box are left free. The updating of the lattice is performed according to the classic

Metropolis Monte Carlo procedure34. The simulation of the optical polarizing micro-

scope textures were produced by means of a Müller matrix approach35,36, assuming

the molecular domains represented by the spins to act as retarders on the light

propagating forward through the sample37. The following arbitrary but reasonable

parameters were employed for computing the optical textures: film thickness d =

5.3 µm, refractive indices nx = 1.51, ny = 1.54 and nz = 1.61, and light wavelength

λ0 = 545 nm. The light retarded by the liquid crystal molecules is observed through

crossed polarizers placed at π/4 and 3/4π with respect to x. A pixel by pixel inten-

sity map is obtained and the calculation is then repeated over a number (typically

500) of different configurations sampled around a certain evolution step to give the

average intensity maps shown with a grey coding in the figures (between black: no

light, and white: light through)37,38.
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Fig. 1. Polarized microscopy textures as obtained by Monte Carlo simulation of a homeotropic

film with biaxial parameters Γ = 0.6 and Λ = 0.5 respectively for different values of anchoring

strength J. The images are taken after 100k evolution cycles for J = 1.0 (top left), J = 0.5 (top

right), J = 0.2 (bottom left) and J = 0.1 (bottom right).

Fig. 2. Polarized microscopy textures as obtained by Monte Carlo simulation of a homeotropic

surface system with biaxial parameters Γ = 0.3 and Λ = 0.6 taken after 10k (top left), 20k (top

right), 50k (bottom left), 100k (bottom right) evolution cycles for an anchoring strength J = 0.1.
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Fig. 3. A selection summary of the textures as obtained from MC simulations for the homeotropic

surfaces case after the same number of cycles (100k) for the different values of the parameter Γ

and Λ =0., 0.2, 0.4.
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Fig. 4. As Fig. 3 for the different values of the parameter Γ and Λ =0.6, 0.8, 1.
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3. Simulations and results

Since in real experiments the network of defects appears when the thickness of the

film is sufficiently large we have at first investigated this aspect. To do this we have

considered a 120 × 120 × 10 system and instead of increasing the film thickness we

have chosen to decrease the strength of the anchoring with the surfaces because

we have shown in previous works that reducing the substrate anchoring strength

is equivalent to increase the film thickness in the simulation28,38. This approach

has obvious practical advantages from the simulations point of view, since it avoids

resorting to an increase of the number of particles in the system, and the unavoidable

enhancement in the demands of computer time, with the consequent advantage of

making it feasible to increase the number of runs which can be performed. To

simulate the cooling from an isotropic phase to a biaxial one, as done in the real

experiment31, we have then chosen to start from an initial configuration of the

system with completely random orientation of the molecular long axes. We have

chosen the biaxial parameters Γ = 0.6 and Λ = 0.5, the temperature to T ∗ = 0.1

(temperature at which every set of biaxial parameters gives a biaxial phase) and

the anchoring strength J of the substrates was then decreased systematically in

steps of 0.1 from 1.0 to 0.1. All the simulated textures develop from the initial

”black” state and we have observed stable defects appearing for the lower values

of the anchoring strength, as shown in Fig. 1. Each defect is characterized by two

brushes emerging from its core. The texture evolves as the system anneals, but the

defects do not disappear even in the longest runs performed (200000 Monte Carlo

sweeps or cycles, where a cycle is a full lattice update) even though they occasionally

migrate outside the sample. An example of the evolution of the simulated textures

is reported in Fig. 2 for the biaxial parameters Γ = 0.3 and Λ = 0.6, and anchoring

strength J = 0.1.

It is apparent for the two choices of biaxial parameters presented in Figs 1 and

2 only two brushes defects with topological charge ±1/2 appear. To test if only

this type of defects are produced for this particular geometry with homeotropic

anchoring at the surfaces we have then performed a detailed study varying Γ and

Λ each in the range [0,1] with a interval ∆ = 0.1 for a total of one hundred cases.

For all this simulation scan we have used an anchoring strength J = 0.1.

A representative selection of the images obtained for the different values of Γ and

Λ is reported in Fig. 3 and Fig. 4. It seems that the number of defects increases as Γ

and Λ increase. We can also see that, for low values of Λ, defects are not produced

over all the Γ domain. In particular for very low values of Γ (0.0, 0.1) defects did

not appear on equilibration. On increasing the Λ value chains of two brush defects

were observed.
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Fig. 5. Example of annihilation (within the square) of two brushes defects with oppiste charge as

obtained from MC simulation of a biaxial film with parameters Γ = 0.6 and Λ = 0.7. The images

are taken at 95 (top right), 96 (top left), 97 (bottom right) and 98 (bottom left) kcycles.

Increasing the value of Γ it appears clearly that the absence of defects persists

also for larger values of the second parameter up to Λ = 0.4 − 0.5 for Γ = 1 (Figs.

3 and 4, last row) and for the higher values of Λ, very long chains of defects with

charges ±1/2 appear on equilibration. It is obvious from these studies that defects

of integral charges were not visible over the complete range of Λ and Γ. Differently

from the planar long axis geometry, where the substrates produce a random planar

alignment for the long axes, the two brushes defects are not produced by a splitting

of a four brushes point defect but are directly created by the system. The defects

are created during the evolution and they can eventually annihilate each other if

they are of opposite charge as can be seen in Fig.5.

The director structure plots, (Fig. 6), shown as snapshots of the spins of a single

layer, confirm the presence of the two brush defects in these systems. An interesting

feature observed here was the presence of an equal number of positively and nega-

tively charged defects. Again, also comparing with the experimental results25,26,30,

these defects can disappear by collapsing into another of opposite charge over a long

period of time.
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Fig. 6. Distribution of the secondary director in the eighth layer of the homeotropic system with

Γ = 0.6, Λ = 0.8 where pairs of half integer defects were initially observed (the circle represent

defects with −1/2 and square +1/2 charges respectively.)

4. Conclusions

We have performed an extensive Monte Carlo study of a BN film with homeotropic

boundary conditions by using a full Straley pair potential which takes into account

the biaxiality of the molecules. We have simulated a 120x120x10 biaxial liquid crys-

tal film system with homeotropic boundaries and considered different combinations

of biaxial parameters to verify their relative importance on the formation of various

optical patterns and in particular looking for the onset of a short axis Schlieren tex-

ture. We have shown that defects of only half integral topological charge occur in a

BN confined between homeotropic substrates, in agreement with the experimental

study of Chandrasekhar25,26,31. Even if the presence of two brushes defects cannot

be considered as a unique test of biaxiality27,39,40 we have shown that this type of

disclinations of strength |s| = 1/2 is the only one that practically appears in the

case of homeotropic alignment and that the stability of these defects depends on

the value of Γ and Λ .
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